1- Introduction

Le projet RESIZED dans lequel s’inscrit cette étude concerne la conception de districts “zéro énergie” ainsi que l’analyse énergétique de districts existants.

Il comporte 4 volets principaux: étude urbanistique, évaluation des consommations, production d’énergie et optimisation de l’ensemble.

Des modèles simplifiés de bâtiments (utilisant un minimum de paramètres) sont développés pour évaluer les besoins énergétiques et le confort dans ces districts.

La première étape – modèle d’un bâtiment unique – est présentée dans ce poster.

2- Methodology

- Each building has been made of a finite number of parts n, called nodes.
- Each resistance between two nodes represents the walls or windows or any other material between two different spaces.
- If resistances and capacitances are not dependent on temperature gradients then this approach is suitable for any linear thermal system.
- Thermal networks provide a systematic way to develop equations for simple and complex models.

3- System identification

- Model identification is the process to determine physical properties of unknown systems according to some experimental data or training data.
- Data extracted from TRNSYS software.
- More than 80% of fitness is achieved.

4- Results

- Using identified parameters to simulate one week and one year performance.
- The model is able to simulate building heating load with high accuracy and the mean square error is very low.

5- Conclusion

- The effectiveness of thermal networks to predict the heating load and indoor temperature in buildings is investigated.
- A “4R2C model” is used to simulate heating load and indoor temperature inside a building.
- The parameter identification has been done for 3 different sets of data (results from TRNSYS calculation).
- Data set (amount of information) can significantly impact on the accuracy of estimated parameters.
- The RC model trained with 1 month data can simulate heating load for one year accurately.

6- Bibliography


7- Acknowledgements & contacts

With support of the FP7 E.U. RE-SIZED (Research Excellence for Solutions and Implementation of NZED) Grant Agreement no 621408

Ali Bagheri (b), Véronique Feldheim (b), Christos S. Ioakimidis (a)

(a) ERA Chair ‘Net-Zero Energy Efficiency on City Districts, NZED’ Unit
(b) Thermal Engineering and Combustion Department, UMONS, Belgium

Research Institute for Energy, University of Mons, Mons, BELGIUM

Ali.BAGHERI@umons.ac.be, Veronique.FELDHEIM@umons.ac.be, Christos.IOAKEIMIDIS@umons.ac.be