Fano Resonances in Hyperbolic metamaterial-based cavities

Fabio Vaianella*, Bjorn Maes

UMONS, Belgium
Micro- and Nanophotonic Materials Group

* Fabio.Vaianella@umons.ac.be
Overview

- Introduction to hyperbolic metamaterials (HMMs)
- Some properties
- Hyperbolic cavities with Fano resonances
Overview

- Introduction to hyperbolic metamaterials (HMMs)
- Some properties
- Hyperbolic cavities with Fano resonances
Metamaterials: « material engineered to have a property that is not found in nature »

Building blocks: subwavelength « meta-atoms »

Optical properties from design rather than base materials

Applications: negative refractive index, invisibility cloak, epsilon-near-zero metamaterials, epsilon-near-pole metamaterials, hyperlens, ...
Hyperbolic metamaterial: anisotropic media

\[\begin{bmatrix} \varepsilon_\parallel & 0 & 0 \\ 0 & \varepsilon_\parallel & 0 \\ 0 & 0 & \varepsilon_\perp \end{bmatrix} \]

Standard effective medium theory (Bruggeman):

\[\varepsilon_\parallel = f \varepsilon_m + (1 - f) \varepsilon_d \]

\[\varepsilon_\perp = \frac{\varepsilon_m \varepsilon_d}{\varepsilon_m (1 - f) + \varepsilon_d f} \]

\[\frac{k_\parallel^2}{\varepsilon_\parallel} + \frac{k_\perp^2}{\varepsilon_\perp} = k_0^2 \]

TM or p-polarization

Metal fill factor
Example with Ag and TiO$_2$

\[f = \frac{1}{3} \]
\[d_{\text{Ag}} = 10 \text{ nm} \]
\[d_{\text{TiO}_2} = 20 \text{ nm} \]

\[\lambda = 500 \text{ nm} - \text{elliptic} \]
Example with Ag and TiO$_2$

$\frac{k_{\parallel}^2}{\varepsilon_{\perp}} + \frac{k_{\perp}^2}{\varepsilon_{\parallel}} = \frac{\omega^2}{c^2}$

Hyperbolic isofrequency curve!

$\varepsilon_{\parallel} \cdot \varepsilon_{\perp} < 0$ possible

$\lambda = 500$ nm - elliptic

$f = \frac{1}{3}$

$d_{\text{Ag}} = 10$ nm

$d_{\text{TiO}_2} = 20$ nm
Example with Ag and TiO$_2$

\[\varepsilon_\parallel \varepsilon_\perp < 0 \text{ possible} \]

\[\frac{k_\parallel^2}{\varepsilon_\perp} + \frac{k_\perp^2}{\varepsilon_\parallel} = \frac{\omega^2}{c^2} \]

Hyperbolic isofrequency curve!

\[\lambda = 500 \text{ nm} - \text{elliptic} \]

\[\lambda = 700 \text{ nm} - \text{hyperbolic} \]

\[f = 1/3 \]

\[d_{\text{Ag}} = 10 \text{ nm} \]

\[d_{\text{TiO}_2} = 20 \text{ nm} \]

\[\lambda = 500 \text{ nm} - \text{elliptic} \]

\[\lambda = 700 \text{ nm} - \text{hyperbolic} \]

\[\begin{align*}
 \frac{k_\parallel}{\varepsilon_\perp} + \frac{k_\perp}{\varepsilon_\parallel} &= \frac{\omega^2}{c^2} \\
 \lambda &= \frac{\pi}{k_\parallel + k_\perp} \\
 \omega &= \frac{2\pi}{\lambda} \sqrt{\varepsilon_\parallel k_\parallel + \varepsilon_\perp k_\perp} \\
 f &= \frac{1}{3} \\
 d_{\text{Ag}} &= 10 \text{ nm} \\
 d_{\text{TiO}_2} &= 20 \text{ nm} \\
\end{align*} \]
Group velocity

Preferred direction of propagation along a cone!

B. Wood, J. B. Pendry, and D. P. Tsai
Limits of EMT

\[
\frac{k_{\parallel}^2}{\varepsilon_{\perp}} + \frac{k_{\perp}^2}{\varepsilon_{\parallel}} = \frac{\omega^2}{c^2}
\]
Limits of EMT

\[\frac{k_{\parallel}^2}{\varepsilon_{\perp}} + \frac{k_{\perp}^2}{\varepsilon_{\parallel}} = \frac{\omega^2}{c^2} \]

Origin of hyperbolic properties: plasmonic
→ Nonlocality
Limits of effective medium theory

\[
\cos (k_y D) = \frac{(\kappa_d \varepsilon_m + \kappa_m \varepsilon_d)^2}{4\kappa_d \kappa_m \varepsilon_d \varepsilon_m} \cosh (\kappa_d d_d + \kappa_m d_m) - \frac{(\kappa_d \varepsilon_m - \kappa_m \varepsilon_d)^2}{4\kappa_d \kappa_m \varepsilon_d \varepsilon_m} \cosh (\kappa_d d_d - \kappa_m d_m)
\]

\[
\kappa_{m,d} = \sqrt{k_x^2 - \varepsilon_{m,d} k_0^2}
\]
Limits of effective medium theory

\[\cos (k_y D) = \frac{(\kappa_d \varepsilon_m + \kappa_m \varepsilon_d)^2}{4 \kappa_d \kappa_m \varepsilon_d \varepsilon_m} \cosh (\kappa_d d_d + \kappa_m d_m) - \frac{(\kappa_d \varepsilon_m - \kappa_m \varepsilon_d)^2}{4 \kappa_d \kappa_m \varepsilon_d \varepsilon_m} \cosh (\kappa_d d_d - \kappa_m d_m) \]

\[\kappa_{m,d} = \sqrt{k_x^2 - \varepsilon_{m,d} k_0^2} \]

Standard effective medium approach (EMT) not valid in many cases
Fano resonances

Slowly varying background

Narrow resonances
Fano resonances

Slowly varying background + Narrow resonances = Asymmetric Fano resonances

Overview

- Introduction to hyperbolic metamaterials (HMMs)
- Some properties
- Hyperbolic cavities with Fano resonances
High-k propagating waves

High-k waves can propagate inside HMM → Possibility to overcome diffraction limit

Application: hyperlens

Extremely high PDOS

Nonresonant phenomena \rightarrow Broadband extremely high PDOS
Spontaneous emission engineering possible

Negative refraction

Isotropic

k_i

HMM

k_i

k_i

k_i
Negative refraction
Negative refraction

Isotropic

HMM

k_i

\mathbf{v}_g

\mathbf{k}_r

Overview

- Introduction to hyperbolic metamaterials (HMMs)
- Some properties
- Hyperbolic cavities with Fano resonances
Reflection and transmission in slanted cavities
Reflection and transmission in slanted cavities

Right and left: simple multilayer HMM

Centre: « asymmetric hyperbolic metamaterial » (tilted optical axis)
1st model: EMT

\[
\frac{k_\parallel^2}{\varepsilon_\perp} + \frac{k_\perp^2}{\varepsilon_\parallel} = k_0^2
\]

- Propagative mode
- Evanescent mode
EMT of the asymmetric HMM

\[
\bar{\varepsilon} = \mathcal{R}(\theta) \bar{\varepsilon}' \mathcal{R}(\theta)^T = \begin{pmatrix} \varepsilon_{xx} & \varepsilon_{xy} \\ \varepsilon_{xy} & \varepsilon_{yy} \end{pmatrix}
\]

\[
k_x^{(1,2)} = \frac{k_y \varepsilon_{xy} \pm \sqrt{(\varepsilon_{xy}^2 - \varepsilon_{xx} \varepsilon_{yy})(k_y^2 - k_0^2 \varepsilon_{xx})}}{\varepsilon_{xx}}
\]
EMT of the asymmetric HMM

\[\bar{\varepsilon} = R(\theta) \bar{\varepsilon}' R(\theta)^T = \begin{pmatrix} \varepsilon_{xx} & \varepsilon_{xy} \\ \varepsilon_{xy} & \varepsilon_{yy} \end{pmatrix} \]

\[k_x^{(1,2)} = \frac{k_y \varepsilon_{xy} \pm \sqrt{(\varepsilon_{xy}^2 - \varepsilon_{xx} \varepsilon_{yy})(k_y^2 - k_0^2 \varepsilon_{xx})}}{\varepsilon_{xx}} \]
Transverse momentum conservation
Transverse momentum conservation

Below θ_t, propagative mode excited
Transverse momentum conservation

Below θ_t, propagative mode excited
Transverse momentum conservation

Below θ_t, propagative mode excited

Above θ_t, evanescent mode excited
Below θ_t, propagative mode excited

Above θ_t, evanescent mode excited
Reflection map

Evanescent mode

Fabry-Pérot
Exact solution (without losses in metal)

\[
\cos (k_y D) = \frac{(\kappa_d \varepsilon_m + \kappa_m \varepsilon_d)^2}{4 \kappa_d \kappa_m \varepsilon_d \varepsilon_m} \cosh (\kappa_d d_d + \kappa_m d_m) - \frac{(\kappa_d \varepsilon_m - \kappa_m \varepsilon_d)^2}{4 \kappa_d \kappa_m \varepsilon_d \varepsilon_m} \cosh (\kappa_d d_d - \kappa_m d_m)
\]
Exact solution (without losses in metal)

\[\cos (k_y D) = \frac{\left(\kappa_d \varepsilon_m + \kappa_m \varepsilon_d\right)^2}{4 \kappa_d \kappa_m \varepsilon_d \varepsilon_m} \cosh (\kappa_d d_d + \kappa_m d_m) - \frac{\left(\kappa_d \varepsilon_m - \kappa_m \varepsilon_d\right)^2}{4 \kappa_d \kappa_m \varepsilon_d \varepsilon_m} \cosh (\kappa_d d_d - \kappa_m d_m) \]

- Periodic isofrequency curve for the propagative mode
- Close isofrequency curve for the evanescent mode
Transverse momentum conservation ($k_y = 0$)

Always a propagative and evanescent mode excited!
Transverse momentum conservation

Always a propagative and evanescent mode excited!
Always a propagative and evanescent mode excited!

→ Interference at the output
Fano resonances ($\Theta = 45^\circ$)

Evanescent background

Reflectance

B (nm)
Fano resonances ($\Theta = 45^\circ$)

Reflectance

B (nm)

Evanescent background

Fabry-Pérot
Fano resonances ($\Theta = 45^\circ$)

- Evanescent background
- Fabry-Pérot
- Exact reflection
Spectrum for $B = 5$ nm
Spectrum for $B = 35$ nm
Reflection map (without loss)

\[2k_x(\theta)B + 2\varphi(\theta) = 2\pi m \] Phase matching

Lossy metal: condition for Fano resonances

\[\frac{\text{Re}(n_x^{\text{prop}})}{\text{Im}(n_x^{\text{prop}})} \]

\[\text{Im}(n_x^{\text{evan}}) \]
Lossy metal: condition for Fano resonances

- Propagating mode should have large real part and small imaginary part of refractive effective index
- Evanescent mode should have imaginary part not too high (background would disappear) and not too low (background not efficient)
Lossy metal: conditions for Fano resonances

- Propagating mode should have large real part and small imaginary part of refractive effective index
- Evanescent mode should have imaginary part not too high (background would disappear) and not too low (background not efficient)
Scattering with losses for $\Theta = 65^\circ$

Fano resonances still present but more or less damped
Introduction of gain in the dielectric: \(\text{Im}(n_{TiO_2}) = -0.07 \)
Comparison lossless – gain/loss structures

Introduction of gain allows 100% transmittance-reflectance Fano resonances.
Actually difficult to introduce gain in TiO2.
Would be easier to work with semiconductors in infrared regime.
Conclusions

- Hyperbolic metamaterials are periodic plasmonic structures with positive component of dielectric tensor in one direction and negative in another

- Fano resonances in ultra compact cavities for great control of the reflection and transmission of light

- Effective medium approximation inaccurate for this work. Predicts the excitation of one single mode, no Fano resonances possible

- Other topics: Heat transfer, active HMM, tunable HMM with graphene, homogenization theory, ...
Thank you for your attention

This work is financially supported by the F.R.I.A.-F.N.R.S.