Migrating from glossary to ontology

The Munich Model:
Water can be found in solid (ice), liquid (water) and gaseous states (vapour); it changes in appearance. Knowledge also comes in different states. It can be said to be solid, when it is easy to grasp and handle, as it is recorded in dictionaries and encyclopaedias. But at times it is also rather gaseous and difficult to grasp. This type of knowledge is the knowledge found in emails, technical notes or other informal snippets of technical communication.

Glossaries
In many fields, concepts are imprecise and fluid. This is particularly true in specialised contexts, where descriptive terminology management is required to help the members of a community working on a given topic identify the concepts they need. In this particular case, the basic tool is a conceptual glossary. Unlike a typical dictionary, its structure is not term-oriented but definition-oriented: it helps scholars to designate concepts, not to define words.

Ontologies
Ontologies are explicit specifications of a conceptualisation, which enable the scholar to give meaning to specialised information. In ontologies, concepts are brought together into graphs, where nodes represent semantic relations and generic relations. Ontologies primarily aim at providing a knowledge model in a given field.

Method
Our method consists in:
- tagging terminology
- detecting relations between different concepts
- building taxonomies
- identifying domain specific rules
- sorting terms into structures and hierarchies

Applications
- Writing and/or editing lecture notes
- Multilingual glossaries
- Databases for computer-aided translation
- Speech recognition and synthesis

3.2.4 POWER CONTROL
Wind turbines require active or passive regulation as power is derived from the free air stream which is, of course, not controllable. Active control includes varying the pitch of the whole blades or blade tips. Passive control results from blade profiles that produce aerodynamic stall at high wind speeds without a change of blade pitch.

Regulation, achieved by controlling the power extracted by the rotor, is necessary since there is little opportunity to store excess energy within the turbine (although there is very short term storage in large machines due to the inertia of the rotor and drive train, and small variations in rotor speed). The philosophy of turbine control is based on three operational requirements: ...