Extremal results on the eccentric connectivity index

Pierre Hauweele
Joint work with Alain Hertz, Hadrien Mélot, Bernard Ries and Gauvain Devillez

Algorithms Lab, Computer Science Departement
Faculty of Sciences, University of Mons

UMONS

GGTW — 2019
Definition

The Eccentric Connectivity Index of a graph \(G = (V, E) \), denoted by \(\xi^c(G) \), is

\[
\xi^c(G) = \sum_{v \in V} \deg(v) \epsilon(v).
\]

Alternatively,

\[
\xi^c(G) = \sum_{uv \in E} (\epsilon(u) + \epsilon(v)).
\]

Example

\[
\begin{align*}
\xi^c(G) &= 2 \cdot 2 + 3 \cdot 1 + 2 \cdot 2 + 3 \cdot 1 = 14
\end{align*}
\]
Eccentric Connectivity Index

- Sharma, Goswani and Madan introduced ξ^c in 1997 in Chemistry;
- Useful as a discriminating topological descriptor for Structure Properties and Structure Activity studies;
- Since 1997, more than 200 chemical papers about ξ^c: applications in drug design, prediction of anti-HIV activities, etc.
Eccentric Connectivity Index

- Sharma, Goswani and Madan introduced ξ^c in 1997 in Chemistry;
- Useful as a discriminating topological descriptor for Structure Properties and Structure Activity studies;
- Since 1997, more than 200 chemical papers about ξ^c: applications in drug design, prediction of anti-HIV activities, etc.
- However, the first mathematical paper with extremal properties on ξ^c was published only in 2010;
- Since 2010, about a dozen papers containing bounds on ξ^c.
Problem

Among connected graphs of order n and size m, what is the maximum possible value for ξ^c?
Maximizing \(\xi_c \) given order and size

Conjecture (Zhang, Liu, and Zhou 2014)

Let \(G \) be a graph of order \(n \) and size \(m \) such that \(d_{n,m} \geq 3 \). Then,

\[
\xi_c(G) \leq \xi_c(E_{n,m}),
\]

with equality if and only if \(G \cong E_{n,m} \).

- The authors prove that the conjecture is true when \(m = n - 1, n, \ldots, n + 4 \) (if \(n \) is large enough).
- It misses some corner cases (we’ll come to it later).
Polytope for \(n = 7 \) with points colored by the diameter \(D \)
Problem

Among connected graphs of order n and diameter D, what is the maximum possible value for ξ^c?
Problem
Among connected graphs of order n and diameter D, what is the maximum possible value for ξ^c?

Theorem (Morgan, Mukwembi, and Swart 2011)
Let G be a connected graph of order n and diameter D. Then,

$$\xi^c(G) \leq D(n - D)^2 + O(n^2).$$

The lollipops $L_{n,D}$ attain this bound.
Among connected graphs of order n and diameter D, what is the maximum possible value for ξ^c?

Theorem (Morgan, Mukwembi, and Swart 2011)

Let G be a connected graph of order n and diameter D. Then,

$$\xi^c(G) \leq D(n - D)^2 + O(n^2).$$

The lollipops $L_{n,D}$ attain this bound.

What about an exact bound?
Definition

Let n, D and k be integers such that $n \geq 4$, $3 \leq D \leq n - 1$ and $0 \leq k \leq n - D - 1$, and let $E_{n,D,k}$ be the graph (of order n and diameter D) constructed from a path $u_0 - u_1 - \ldots - u_D$ by joining each vertex of a clique K_{n-D-1} to u_0 and u_1, and k vertices of the clique to u_2.

- $E_{n,D,0} \simeq L_{n,D}$, the lollipop;
- $E_{n,D,n-D-1}$ is a lollipop $L_{n,D-1}$ missing an edge;
- if $D = n - 1$, then $k = 0$ and $E_{n,n-1,0} \simeq P_n$.

$E_{8,4,k}$, dashed edges depend on k.
Maximum values of ξ^c for given order n and diameter D
Maximum values of ξ^c for given order n and diameter D
Maximum values of ξ^c for given order n and diameter D
max ξ^c with order and diameter when $D \geq 3$

Theorem (H et al. 2019)

Let G be a connected graph of order $n \geq 4$ and diameter $3 \leq D \leq n - 1$. Let $f(n, D) = \max\{\xi^c(E_{n,D,k}) \mid k = 0, \ldots, n - D - 1\}$. Then $\xi^c(G) \leq f(n, D)$ with equality if and only if G belongs to C^D_n.

$C^D_n = \begin{cases}
\{E_{n,3,n-4}\} & \text{if } n = 4, 5 \text{ and } D = 3; \\
\{E_{n,3,2}, H_2\} & \text{if } n = 6 \text{ and } D = 3; \\
\{E_{n,3,0}, \ldots, E_{n,3,3}, H_3\} & \text{if } n = 7 \text{ and } D = 3; \\
\{E_{n,3,0}\} & \text{if } n > 7 \text{ and } D = 3; \\
\{E_{n,D,0}\} & \text{if } n > 3(D - 1) \text{ and } D \geq 4; \\
\{E_{n,D,0}, \ldots, E_{n,D,n-D-1}\} & \text{if } n = 3(D - 1) \text{ and } D \geq 4; \\
\{E_{n,D,n-D-1}\} & \text{if } n < 3(D - 1) \text{ and } D \geq 4.
\end{cases}$
Proof plan

1. Compute $\xi^c(E_{n,D,k})$.

2. Work out $f(n, D) = \max_k \xi^c(E_{n,D,k})$ (and convince ourselves that the graphs in C^D_n have $\xi^c = f(n, D)$).

3. Show that, for a graph G of order n and diameter D, $\xi^c(G) \leq f(n, D)$, and if it attains the bound, then it is isomorphic to a graph in C^D_n.
1. Compute $\xi^c(E_{n,D,k})$

Lemma

Let n, D and k be integers such that $n \geq 4$, $3 \leq D \leq n - 1$ and $0 \leq k \leq n - D - 1$, then

$$\xi^c(E_{n,D,k}) = 2 \sum_{i=0}^{D-1} \max\{i, D - i\} + \left(n - D - 1\right)\left(2D - 1 + D(n - D)\right)$$

$$+ k\left(2D - n - 1 + \max\{2, D - 2\}\right).$$
2. Work out \(f(n, D) = \max_k \xi^c(E_{n,D,k}) \)

\[
\xi^c(E_{n,D,k}) = 2 \sum_{i=0}^{D-1} \max\{i, D - i\} + \left(n - D - 1\right)\left(2D - 1 + D(n - D)\right) \\
+ k\left(2D - n - 1 + \max\{2, D - 2\}\right).
\]
2. Work out \(f(n, D) = \max_k \xi^c(E_{n,D,k}) \)

\[
\xi^c(E_{n,D,k}) = 2 \sum_{i=0}^{D-1} \max\{i, D - i\} + (n - D - 1)(2D - 1 + D(n - D)) \\
+ k \left(2D - n - 1 + \max\{2, D - 2\} \right).
\]

"k term" = \[\begin{cases}
2D - n + 1 & \text{if } D = 3; \\
3D - n - 3 & \text{if } D \geq 4.
\end{cases}\]
2. Work out $f(n, D) = \max_k \xi^c(E_{n,D,k})$

$$
\xi^c(E_{n,D,k}) = 2 \sum_{i=0}^{D-1} \max\{i, D - i\} + (n - D - 1)\left(2D - 1 + D(n - D)\right) \\
+ k\left(2D - n - 1 + \max\{2, D - 2\}\right).
$$

"k term" = \[
\begin{cases}
2D - n + 1 & \text{if } D = 3; \\
3D - n - 3 & \text{if } D \geq 4.
\end{cases}
\]

$$
C^D_n = \begin{cases}
\{E_{n,3,n-4}\} & \text{if } n = 4, 5 \text{ and } D = 3; \\
\{E_{n,3,2}, H_2\} & \text{if } n = 6 \text{ and } D = 3; \\
\{E_{n,3,0}, \ldots, E_{n,3,3}, H_3\} & \text{if } n = 7 \text{ and } D = 3; \\
\{E_{n,3,0}\} & \text{if } n > 7 \text{ and } D = 3; \\
[\ldots] & \\
\end{cases}
$$
2. Work out \(f(n, D) = \max_k \xi^c(E_{n,D,k}) \)

\[
\xi^c(E_{n,D,k}) = 2 \sum_{i=0}^{D-1} \max\{i, D - i\} + \left(n - D - 1\right)\left(2D - 1 + D(n - D)\right) \\
+ k\left(2D - n - 1 + \max\{2, D - 2\}\right).
\]

"k term" = \[
\begin{cases}
2D - n + 1 & \text{if } D = 3; \\
3D - n - 3 & \text{if } D \geq 4.
\end{cases}
\]

\[
C^D_n = \begin{cases}
[\ldots] & \text{if } n > 3(D - 1) \text{ and } D \geq 4; \\
\{E_{n,D,0}\} & \text{if } n = 3(D - 1) \text{ and } D \geq 4; \\
\{E_{n,D,0}, \ldots, E_{n,D,n-D-1}\} & \text{if } n < 3(D - 1) \text{ and } D \geq 4.
\end{cases}
\]
2. Work out \(f(n, D) = \max_k \xi^c(E_{n,D,k}) \)

\[
\xi^c(E_{n,D,k}) = 2 \sum_{i=0}^{D-1} \max\{i, D - i\} + \left(n - D - 1 \right) \left(2D - 1 + D(n - D) \right) \\
+ k \left(2D - n - 1 + \max\{2, D - 2\} \right).
\]

\[
f(n, D) = \begin{cases}
14 + \left(n - 4 \right) \left(3n - 4 + \max\{0, 2D - n + 1\} \right) & \text{if } D = 3; \\
2 \sum_{i=0}^{D-1} \max\{i, D - i\} \\
+ \left(n - D - 1 \right) \left(2D - 1 + D(n - D) + \max\{0, 3D - n - 3\} \right) & \text{if } D \geq 4.
\end{cases}
\]
3. Last step of the proof — subplan

Theorem
\[
\text{Let } G \text{ be a connected graph of order } n \geq 4 \text{ and diameter } 3 \leq D \leq n - 1. \text{ Then } \xi^c(G) \leq f(n, D) \text{ with equality if and only if } G \text{ belongs to } \mathcal{C}_n^D.
\]

1. Give an upper bound on the total weight of the vertices outside \(P \).
2. Improve that bound a bit.
3. Extend to an upper bound on \(\xi^c(G) \).
4. Prove that this bound is attained only if \(G \) is isomorphic to one of \(\mathcal{C}_n^D \).
Tool lemma

Let G be a connected graph of diameter $D \geq 3$. Let P be a diametral path, and u a vertex on P such that $\epsilon(u) > L$, with L the longest distance from u to an extremity of P. Finally, let v be a vertex such that $d(u, v) = \epsilon(u)$ and let $v = w_1 - w_2 - \cdots - w_{\epsilon(u)+1} = u$ be a shortest path linking v to u. Then

- vertices $w_1, \ldots, w_{\epsilon(u)-L}$ do not belong to P;
- vertex $w_{\epsilon(u)-L}$ has either no neighbor on P, or its unique neighbor on P is an extremity at distance L from u;
- if $\epsilon(u) - L > 1$ then vertices $w_1, \ldots, w_{\epsilon(u)-L-1}$ have no neighbor on P.
Tool lemma

Let G be a connected graph of diameter $D \geq 3$. Let P be a diametral path, and u a vertex on P such that $\epsilon(u) > L$, with L the longest distance from u to an extremity of P. Finally, let v be a vertex such that $d(u, v) = \epsilon(u)$ and let $v = w_1 - w_2 - \cdots - w_{\epsilon(u)+1} = u$ be a shortest path linking v to u. Then

- vertices $w_1, \ldots, w_{\epsilon(u)-L}$ do not belong to P;
- vertex $w_{\epsilon(u)-L}$ has either no neighbor on P, or its unique neighbor on P is an extremity at distance L from u;
- if $\epsilon(u) - L > 1$ then vertices $w_1, \ldots, w_{\epsilon(u)-L-1}$ have no neighbor on P.

\[\| P \| = D \]

\[\epsilon(u) > L \]
Tool lemma

Let G be a connected graph of diameter $D \geq 3$. Let P be a diametral path, and u a vertex on P such that $\epsilon(u) > L$, with L the longest distance from u to an extremity of P. Finally, let v be a vertex such that $d(u, v) = \epsilon(u)$ and let $v = w_1 - w_2 - \cdots - w_{\epsilon(u)+1} = u$ be a shortest path linking v to u. Then

- vertices $w_1, \ldots, w_{\epsilon(u)-L}$ do not belong to P;
- vertex $w_{\epsilon(u)-L}$ has either no neighbor on P, or its unique neighbor on P is an extremity at distance L from u;
- if $\epsilon(u) - L > 1$ then vertices $w_1, \ldots, w_{\epsilon(u)-L-1}$ have no neighbor on P.

\[\| P \| = D \]

\[d(u, v) = \epsilon(u) > L \]
Let G be a connected graph of diameter $D \geq 3$. Let P be a diametral path, and u a vertex on P such that $\epsilon(u) > L$, with L the longest distance from u to an extremity of P. Finally, let v be a vertex such that $d(u, v) = \epsilon(u)$ and let $v = w_1 - w_2 - \cdots - w_{\epsilon(u)+1} = u$ be a shortest path linking v to u. Then

- vertices $w_1, \ldots, w_{\epsilon(u)-L}$ do not belong to P;
- vertex $w_{\epsilon(u)-L}$ has either no neighbor on P, or its unique neighbor on P is an extremity at distance L from u;
- if $\epsilon(u) - L > 1$ then vertices $w_1, \ldots, w_{\epsilon(u)-L-1}$ have no neighbor on P.

\[\|P\| = D \]
\[d(u, v) = \epsilon(u) > L \]
\(o_i \): number of vertices going from \(u_i \) out of \(P \).

\[
\delta_i = \max\{i, D - i\},
\]

\[
r_i = \epsilon(u_i) - \delta_i,
\]

\[
r^* = \max_{i=1}^{D-1} r_i,
\]

\[
V_0 = \{ v \notin P \mid N(v) \cap P = \emptyset \},
\]

\[
V_{1,2} = \{ v \notin P \mid |N(v) \cap P| \in \{1, 2\} \},
\]

\[
V_{3}^{D-1} = \{ v \notin P \mid |N(v) \cap P| = 3, \epsilon(v) \leq D - 1 \},
\]

\[
V_{3}^{D} = \{ v \notin P \mid |N(v) \cap P| = 3, \epsilon(v) = D \},
\]

\[
\rho(v) = \max\{r_i \mid u_i \text{ is adjacent to } v\},
\]

\[
\rho^* = \max_{v \in V_{1,2} \cup V_{3}^{D-1} \cup V_{3}^{D}} \rho(v).
\]
Claim (weight outside P)

$$
\sum_{v \notin P} W(v) \leq (n - D - 1)D(n - D) + n_3^{D-1}(2D - n - 1) - Dn_3^D - 2Dr^* \\
+ D \min\{1, \rho^*\} - \sum_{v \in V_{1,2} \cup V_3^D \cup V_3^{D-1}} (2D - 1)\rho(v).
$$
3.1. Bound on the weight outside \(P \)

\[
\mathcal{W}(V_0 \cup V_{1,2}) \leq D(n - D)(n - D - 1 - n_3^{D-1} - n_3^D) - 2Dr^* + D \min\{1, \rho^*\}.
\]

\[
\mathcal{W}(V_3^{D-1} \cup V_3^D) \leq (n - D + 1)\left((D - 1)n_3^{D-1} + Dn_3^D\right)
\]

We get a bound on the total weight of the vertices outside \(P \)

\[
B = D(n - D)(n - D - 1 - n_3^{D-1} - n_3^D) + (n - D + 1)\left((D - 1)n_3^{D-1} + Dn_3^D\right) - 2Dr^* + D \min\{1, \rho^*\}
\]

\[
= (n - D - 1)D(n - D) + n_3^{D-1}(2D - n - 1) + Dn_3^D - 2Dr^* + D \min\{1, \rho^*\}.
\]

Can only be reached if all vertices outside \(P \) are pairwise adjacent. But not possible if \(\rho^* > 0 \).
3.2. Improving the bound on the weight outside of P

Better upper bound on the total weight of vertices outside of P

$$B - \sum_{v \in V_1,2 \cup V_3^D} 2D\rho(v) - \sum_{v \in V_3^{D-1}} (2D - 1)\rho(v) - 2Dn_3^D \leq (n - D - 1)D(n - D) + n_3^{D-1}(2D - n - 1) - Dn_3^D - 2Dr^* + D \min\{1, \rho^*\} - \sum_{v \in V_1,2 \cup V_3^D \cup V_3^{D-1}} (2D - 1)\rho(v).$$

Which is the claim.
Claim (weight on P)

$$\xi^c(G) \leq (n - D - 1)D(n - D) + n^{D-1}_3(2D - n - 1) - Dn^D_3 + 2 \sum_{i=0}^{D-1} \delta_i + \sum_{i=0}^{D} \delta_i o_i.$$
Bounding the weight on P

Now we compute a bound on the total weight of P.

$$\mathcal{W}(P) = 2D + D(o_0 + o_D) + \sum_{i=1}^{D-1} (\delta_i + r_i)(2 + o_i)$$

$$= 2 \sum_{i=0}^{D-1} \delta_i + 2 \sum_{i=1}^{D-1} r_i + \sum_{i=1}^{D-1} r_i o_i + \sum_{i=0}^{D} \delta_i o_i.$$

We bound this, so as to remove the r_i's.

$$\mathcal{W}(P) \leq 2 \sum_{i=0}^{D-1} \delta_i + \sum_{i=0}^{D} \delta_i o_i + 2r^*(D - 1) + \sum_{v \in V_{1,2} \cup V_3^D \cup V_3^D} 3\rho(v).$$
3.3. Upper bound on $\xi^c(G)$

Summing the bounds from the two claims and rewriting, we have

$$\xi^c(G) \leq A_1 + A_2,$$

with

$$A_1 = (n - D - 1)D(n - D) + n_3^{D-1}(2D - n - 1) - Dn_3^D$$

$$+ 2 \sum_{i=0}^{D-1} \delta_i + \sum_{i=0}^{D} \delta_i o_i$$

$$A_2 = - \sum_{v \in V_{1,2} \cup V_3^D \cup V_3^{D-1}} (2D - 4)\rho(v) - 2r^* + D \min\{1, \rho^*\}.$$

- If $r^* = 0$, then $A_2 = 0$, which implies $A_1 + A_2 = A_1$.
- If $\rho^* > 0$, then $A_2 \leq 4 - 2D - 2r^* + D = 4 - D - 2r^* < 0$, which implies $A_1 + A_2 < A_1$.
- If $r^* > 0$ and $\rho^* = 0$, then $A_2 = -2r^* < 0$, which implies $A_1 + A_2 < A_1$.
3.4. The bound is attained only if G is one of C_n^D

In summary, the best possible bound is A_1 and this bound is attained only if the upper bound of Claim (weight outside P) is reached with $r^* = 0$. As shown in the proof of the claim, this implies $n_0 = 0$, $\epsilon(v) = D$ for all vertices in $V_{1,2}$, and all vertices in $V_{1,2} \cup V_{3}^{D-1}$ are pairwise adjacent.

We only need to prove that $A_1 = f(n, D)$ and that the graphs G with $\xi^c(G) = A_1 = f(n, D)$ are exactly those in C_n^D. \rightarrow bound and minimize $f(n, D) - A_1$.

Maximizing ξ^c for a fixed order

Morgan, Mukwembi, and Swart 2011 also gave an asymptotic bound for maximizing ξ^c given the order only.

Theorem (Morgan, Mukwembi, and Swart 2011)

Let G be a connected graph of order n. Then,

$$
\xi^c(G) \leq \frac{4}{27} n^3 + \mathcal{O}(n^2).
$$
Theorem (H et al. 2019)

Let \(\xi_n^{c*} \) be the largest eccentric connectivity index among all graphs of order \(n \). The only graphs that attain \(\xi_n^{c*} \) are the following:

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\xi_n^{c*})</th>
<th>(\text{optimal graphs})</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6</td>
<td>(K_3) and (P_3)</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>(\overline{M}_4)</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td>(\overline{M}_5) and (H_1)</td>
</tr>
<tr>
<td>6</td>
<td>48</td>
<td>(\overline{M}_6)</td>
</tr>
<tr>
<td>7</td>
<td>68</td>
<td>(\overline{M}_7)</td>
</tr>
<tr>
<td>8</td>
<td>96</td>
<td>(\overline{M}8) and (E{8,4,3})</td>
</tr>
</tbody>
</table>

\[\geq 9 \quad g(n) \quad E_n, \left\lceil \frac{n+1}{3} \right\rceil + 1, n - \left\lceil \frac{n+1}{3} \right\rceil - 2. \]

This is obtained as a corollary of our previous results by a simple analysis of \(\max_D f(n, D) \).
Theorem (Devillez et al. 2018)

Let $\xi_{n,p}^c$ be the largest eccentric connectivity index among all graphs of order $n > 3$ with $p < n - 2$ pending vertices. The only graphs that attain $\xi_{n,p}^c$ are the following:

<table>
<thead>
<tr>
<th>n</th>
<th>p</th>
<th>optimal graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 3</td>
<td>> 0</td>
<td>$H_{n,p}$</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>K_4</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>$H_{5,0}$, $S_{5,2}$, K_5 and C_1</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>$S_{6,2}$</td>
</tr>
<tr>
<td>≥ 7</td>
<td>0</td>
<td>$H_{n,0}$</td>
</tr>
</tbody>
</table>

\[H_7,3\] \[H_7,2\] \[S_{4,2}\]
Maximizing \(\xi^c \) with given order and size

Conjecture (H et al. 2019)

Let \(n \) and \(m \) be two integers such that \(n \geq 4 \) and \(m \leq \binom{n-1}{2} \). Also, let

\[
D = \left\lfloor \frac{2n + 1 - \sqrt{17 + 8(m - n)}}{2} \right\rfloor \quad \text{and} \quad k = m - \left(\frac{n - D + 1}{2} \right) - D + 1.
\]

Then, the largest eccentric connectivity index among all graphs of order \(n \) and size \(m \) is attained with \(E_{n,D,k} \). Moreover,

- if \(D > 3 \), then \(\xi^c(G) < \xi^c(E_{n,D,k}) \) for all other graphs \(G \) of order \(n \) and size \(m \).
- if \(D = 3 \) and \(k = n - 4 \), then the only other graphs \(G \) with \(\xi^c(G) = \xi^c(E_{n,D,k}) \) are those obtained by considering a path \(u_0 - u_1 - u_2 - u_3 \), and by joining \(1 \leq i \leq n - 3 \) vertices of a clique \(K_{n-4} \) to \(u_0, u_1, u_2 \) and the \(n - 4 - i \) other vertices of \(K_{n-4} \) to \(u_1, u_2, u_3 \).

Appendix
Maximum values of ξ^c for given order n and diameter D
Maximum values of ξ^c for given order n and diameter D
max ξ^c with given order and diameter when $D = 2$

Theorem (H et al. 2019)

Let G be a connected graph of order $n \geq 4$ and diameter 2. Then,

$$\xi^c(G) \leq 2n^2 - 4n - 2(n \mod 2)$$

with equality if and only if $G \simeq \overline{M}_n$, or $n = 5$ and $G \simeq \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$.
Upper bound on ξ^c for connected graphs with fixed size

We define $E_{n,m}$ as follows:

$n = 7, m = 14$
Upper bound on ξ^c for connected graphs with fixed size

We define $E_{n,m}$ as follows:

- The biggest possible clique without disconnecting the graph, leaving a path with the remaining vertices.

$n = 7, m = 14$
Upper bound on ξ^c for connected graphs with fixed size

We define $E_{n,m}$ as follows:

- The biggest possible clique without disconnecting the graph, leaving a path with the remaining vertices.
- Add remaining edges between vertices of the clique and the first vertex of the path.

$n = 7, m = 14$
Upper bound on ξ^c for connected graphs with fixed size

We define $E_{n,m}$ as follows:

- The biggest possible clique without disconnecting the graph, leaving a path with the remaining vertices.
- Add remaining edges between vertices of the clique and the first vertex of the path.

This graph is unique for given n and m. We define $d_{n,m}$ as the diameter of $E_{n,m}$.
Zhou and Du 2010

- Complete graphs: \(\xi^c(K_n) = n(n - 1) \)
- Complete bipartite graphs: \(\xi^c(K_{a,b}) = 4ab \) for \(a, b \geq 2 \)
- Stars: \(\xi^c(S_n) = 3(n - 1) \)
- Cycles: \(\xi^c(C_n) = 2n \lfloor \frac{n}{2} \rfloor \)
- Paths: \(\xi^c(P_n) = \left\lfloor \frac{3(n-1)^2+1}{2} \right\rfloor \)
Theorem (Zhou and Du 2010)

Let G be a connected graph of order $n \geq 4$, then

$$\xi_c(G) \geq 3(n - 1),$$

with equality if and only if $G \cong S_n$.

Theorem (Zhou and Du 2010)

Let G be an n-vertex connected graph with m edges, where

$$n - 1 \leq m \leq \binom{n}{2}.$$

Let $a = \left\lfloor \frac{2n - 1 - \sqrt{(2n - 1)^2 - 8m}}{2} \right\rfloor$. Then

$$\xi_c(G) \geq 4m - a(n - 1)$$

with equality if and only if $G \in \mathcal{G}_{(n,m)}$.

$\mathcal{G}_{(n,m)}$ is the set of graphs $K_a \vee H$, where H is a graph with $n - a$ vertices and $m - \binom{a}{2} - a(n - a)$ edges.
Theorem (Morgan, Mukwembi, and Swart 2012)

Let $G = (V, E)$ be a connected graph of order n, and diameter $D \geq 3$. Then

$$\xi^c(G) \geq \xi^c(V_{n,D}),$$

where $V_{n,D}$ is the volcano graph, obtained from a path P_{D+1} and a set S of $n - D - 1$ vertices, by joining each vertex in S to a central vertex of P_{d+1}.
Degree distance

The degree distance D' of a graph G is

$$
\sum_{uv \in E} (\deg(u) + \deg(v))d(u, v).
$$

Theorem (Zhou and Du 2010)

Let $G = (V, E)$ be a connected graph with $n \geq 2$ vertices. Then

$$
\xi^c(G) \geq \frac{1}{n - 1} D'(G),
$$

with equality if and only if $G = K_n$.