SINTERING/MELTING OF BATIO$_3$
COATING BY LASER HEAT TREATMENTS

N. Basile1, A. Van Baekel1, M. Gonon1, F. Petit2, C. Ott2, F. Cambier2

1Université de Mons, Faculté Polytechnique, Service de Science des Matériaux, 56, rue de l’Epargne, B-7000 Mons (Belgium)
2Belgium Ceramic Research Centre, 5, avenue du gouverneur Cornez, B-7000 Mons (Belgium)

Purpose
The behavior of barium titanate powders (micrometric, nanometric and mix of micro+nano) under selective laser treatment (YAG 20 W max) is investigated. In a first stage, powder compacts are used in order to characterize the response of the powder according to the laser scan conditions (power %, spot speed mm/s and vectorization step µm). Then specimens simulating a capacitor geometry (alumina substrate / Pt electrode / BaTiO$_3$ thick coating) where prepared.

Preparation of BaTiO$_3$ powder compacts
Compact of BaTiO$_3$ powder (uniaxial pressure): 20 g, Ø 4cm

Evolution of the compaction in function of the pressure with 2 grades of powder (micro d_{50}=0,5µm d_{90}=2,3µm; nano d_{50}=50nm): 79 MPa good compact cohesion

Laser treatment on BaTiO$_3$ powder compacts
Figure on the right shows squares lased on the surface of a BaTiO$_3$ compact. Figures below show these surfaces lased according to different scan conditions and powder characteristics.

XRD/MEB investigations of lased surfaces

Laser treatment of BaTiO$_3$ powder (micro) coatings deposited by spraying on alumina substrate
Figures below show SEM pictures of a BaTiO$_3$ coating after laser treatment at a speed of 200mm/s, a vectorization of 20 µm and a laser power of 100% on a surface of 1 x 1 cm2.

Figure A: Numerous cracks with a periodic distribution \rightarrow thermal gradient at the rear of the beam scan and the also to the difference in expansion coefficient between the BaTiO$_3$ layer and the substrate.
Figure B: Dendrite like structure \rightarrow the coating results of the melting and crystallization of the BaTiO$_3$ powder (confirmed by XRD)
Figure C: coating fairly dense (thickness of about 18 µm)

Conclusion
In order to create a microelectronic component, we have sprayed an aqueous ink of BaTiO$_3$ on alumina substrate recovered by platinum. Dense coatings adherents to the substrate have been realized. The powder melts and a partial crystallization appears during the cooling of the coating. We try now to create only a densification of the powder without melting on compact of BaTiO$_3$ powder. We hope to increase the densification with a mix of powder.

This work is supported by the European Union (FEDER) and the Région Wallonne.