Extending finite-memory determinacy by Boolean combination of winning conditions

Mickael Randour
F.R.S.-FNRS & UMONS – Université de Mons, Belgium

June 22, 2019

MoRe 2019 – 2nd International Workshop on Multi-objective Reasoning in Verification and Synthesis
Strategy synthesis for two-player games on graphs

Finding **good** controllers for systems interacting with an **antagonistic** environment.

- Good? Performance evaluated through *objectives / payoffs*.

Question

When are **simple** strategies sufficient to play optimally?

- We establish a general framework that preserves **finite-memory determinacy** when combining objectives.
- Joint work with S. Le Roux and A. Pauly, in FSTTCS’18 [RPR18] (on arXiv).
1. Context, games, strategies

2. Memoryless determinacy

3. Finite-memory determinacy and Boolean combinations

4. Conclusion and ongoing work
1. Context, games, strategies

2. Memoryless determinacy

3. Finite-memory determinacy and Boolean combinations

4. Conclusion and ongoing work
Strategy synthesis for two-player games

1. How complex is it to decide if a winning strategy exists?
2. How complex such a strategy needs to be? **Simpler is better.**
3. Can we synthesize one efficiently?

⇒ **Focus on Question 2.**
Games on graphs: example

We consider *finite* arenas with vertex *colors* in C. Two players: circle (1) and square (2). Strategies $C^* \times V_i \rightarrow V$ (w.l.o.g.).

- A **winning condition** is a set $W \subseteq C^\omega$.

From where can Player 1 ensure to reach v_6? How complex is his strategy?

Memoryless strategies ($V_i \rightarrow V$) always suffice for reachability (for both players).
1. Context, games, strategies

2. Memoryless determinacy

3. Finite-memory determinacy and Boolean combinations

4. Conclusion and ongoing work
When are memoryless strategies sufficient to play optimally?

Virtually always for \textbf{simple} winning conditions!

Examples: reachability, safety, Büchi, parity, mean-payoff, energy, total-payoff, average-energy, etc.

\textbf{Can we characterize when they are?}

Yes, thanks to Gimbert and Zielonka [GZ05] (see also, e.g., [Kop06, AR17]).
Gimbert and Zielonka’s criterion

Memoryless strategies suffice for a preference relation (and the induced winning conditions) iff

1. it is monotone,
 ▶ Intuitively, stable under prefix addition.

2. it is selective.
 ▶ Intuitively (the true characterization is slightly more subtle), stable under cycle mixing.

Example: reachability.

No equivalent for finite memory!

I will come back to that... 😊
Combining winning conditions (1/2)

Multi-objective reasoning is crucial to model trade-offs and interplay between several qualitative and quantitative aspects.

Memoryless strategies do not suffice anymore, even for simple conjunctions!

Examples:
- Büchi for v_1 and $v_3 \rightarrow$ finite (1 bit) memory.
- Mean-payoff (average weight per transition) ≥ 0 on all dimensions \rightarrow infinite memory!
Combining winning conditions (2/2)

Our goal

We want a *general* and *abstract* theorem guaranteeing the sufficiency of finite-memory strategies\(^a\) in games with Boolean combinations of objectives provided that the underlying simple objectives fulfil some criteria.

\(^a\)Implementable via a finite-state machine.

Advantages:

- study of core features ensuring finite-memory determinacy,
- works for almost all existing settings and many more to come.

Drawbacks:

- concrete memory bounds are huge (as they depend on the most general upper bound).
- sufficient criterion, not full characterization.
1. Context, games, strategies

2. Memoryless determinacy

3. Finite-memory determinacy and Boolean combinations

4. Conclusion and ongoing work
The building blocks

The full approach is technically involved but can be sketched intuitively.

Criterion outline

Any well-behaved winning condition combined with conditions traceable by finite-state machines (i.e., safety-like conditions) preserves finite-memory determinacy.

To state this theorem formally, we need three ingredients:

1. regularly-predictable winning conditions,
2. regular languages,
3. hypothetical subgame-perfect equilibria (hSPE).
Regular predictability

A winning condition is regularly-predictable if for all games, for all vertices, there exists a finite automaton that recognizes the color histories from which Player 1 has a winning strategy.

- All prefix-independent objectives are regularly-predictable.
- Reachability and safety are not prefix-independent but are regularly-predictable.

Regular-predictability ≠ FM determinacy!

- Energy games with only a lower bound are memoryless determined but not regularly-predictable.
- Let W be the non-regular sequences in $\{0, 1\}^\omega$: it is prefix-independent hence regularly-predictable but finite-memory strategies do not suffice to win.
Regular combinations of winning objectives

Let \mathcal{W} be a class of winning conditions closed under Boolean combinations (can be the trivial one).

We denote by $R_\ell(\mathcal{W})$ the set of winning objectives obtained by Boolean combination of objectives in \mathcal{W} and ℓ safety-like conditions based on regular languages over C (i.e., conditions asking that there is no prefix of the play in the regular language).

Examples: fully-bounded energy conditions and window conditions can be described as regular languages, hence added freely in Boolean combinations with more general objectives.

Remark
Regular conditions are regularly-predictable, not the opposite.
Hypothetical subgame-perfect equilibria

A strategy profile where both players play optimally after all initial histories

- that are possible from the starting vertex in the arena is called a subgame-perfect equilibrium (SPE).
- in C^* is called a hypothetical SPE.

HSPEs are technically useful when combining games.

FM hSPE slightly more restrictive than FM determinacy.

Morally equivalent in almost all settings.

⇒ We will see a corner case later.
Our main result (sketch)

Regular combinations preserve FM determinacy

Let \mathcal{W} be a class of winning conditions that

1. is closed under Boolean combinations,
2. is regularly-predictable,
3. ensures the existence of finite-memory hSPE.

Then all conditions in $R_\ell(\mathcal{W})$ also satisfy properties 2 and 3.

If you think of it as combinations with safety-like conditions, not surprising...

But finding the good concepts and proving the result was difficult!
Rediscovery of FM determinacy results (1/2)

Regular conditions: reachability, safety, fully-bounded energy, window (mean-payoff and parity), etc.

Regularly-predictable conditions.

- **Regular ones.** Multi-dimension fully-bounded energy games [BFL$^+$08, BMR$^+$18, BHM$^+$17], conjunctions of window objectives [CDRR15, BHR16a], extension to Boolean combinations.

- **Parity and Muller.** Combinations expressible in the closed class, can be mixed in any Boolean combination with regular languages and retain FM determinacy. Generalized parity games [CHP07], or combinations of parity conditions with window conditions [BHR16b], extension to Boolean combinations.
.Rediscovery of FM determinacy results (2/2)

- **Mean-payoff.** Regularly-predictable and admits FM hSPE. Not true for Boolean combinations [VCD$^+$15, Vel15]. One can take \mathcal{W} as the trivial class containing one mean-payoff condition and its complement, and use it in Boolean combinations with regular languages.

- **Average-energy, total-payoff and energy with no upper bound.** Not regularly-predictable as one needs to be able to store an arbitrarily large sum of weights in memory to decide if Player 1 can win from a given prefix. Hence our theorem cannot be applied to these conditions.
Theorem applicability

Some conditions we do not cover

Combinations of mean-payoff, average-energy, total-payoff, or combinations of mean-payoff and parity.

But they do not preserve FM determinacy!

\[\text{[VCD}^+15, \text{Vel}15, \text{BMR}^+18, \text{CDRR}15, \text{CHJ}05] \]

And we rediscover many results from the literature \([\text{BFL}^+08, \text{BMR}^+18, \text{BHM}^+17, \text{CDRR}15, \text{BHR}16a, \text{CHP}07, \text{BHR}16b] \) and are able to extend them to more general combinations (or to completely novel ones).
Corner cases: FM determined combinations we do not cover

We know of three cases:

1. conjunctions of energy conditions [CRR14, JLS15],
2. conjunctions of energy and parity conditions [CD12, CRR14],
3. conjunctions of energy and a single average-energy condition [BHM+17].

Observation: common technique in ad-hoc proofs

Proving equivalence with games where the energy condition can be bounded both from below and from above, for a sufficiently large bound.

⇒ We retrieve applicability of our theorem for cases 1 and 2.
Focus: average-energy + energy conditions

Only case of preservation of FM determinacy which we do not cover!

- The average-energy condition is not regularly-predictable \([BMR^{+18}, BHM^{+17}]\).
- And it behaves rather oddly in comparison to all other classical objectives.

Average-energy games with a lower-bounded energy condition are FM determined but do not admit FM hSPE, the only setting in this case to our knowledge.

Goal: reach \(v_3\) with sum zero.

- FM determined.
- SPE require infinite memory.
1. Context, games, strategies
2. Memoryless determinacy
3. Finite-memory determinacy and Boolean combinations
4. Conclusion and ongoing work
Conclusion

- Combining similar simple objectives leads to contrasting behaviors: difficult to extract the core features leading to FM determinacy.

- Our main result is a **sufficient criterion**, not a full characterization.

 ▶️ In practice, it does cover everything except *average-energy with a lower-bounded energy condition* — a very strange corner case.

 ▶️ **Any weakening of our hypotheses almost immediately leads to falsification.**

 ▶️ We also have several **more precise results** (e.g., much lower bounds) for specific combinations and/or restrictive hypotheses.
Ongoing work

We now have an almost complete picture of the frontiers of FM determinacy for combinations of objectives.

What about a complete characterization à la Gimbert and Zielonka?

Thank you! Any question?
References I

Benjamin Aminof and Sasha Rubin.
First-cycle games.

Infinite runs in weighted timed automata with energy constraints.

Patricia Bouyer, Piotr Hofman, Nicolas Markey, Mickael Randour, and Martin Zimmermann.
Bounding average-energy games.

Véronique Bruyère, Quentin Hautem, and Mickael Randour.
Window parity games: an alternative approach toward parity games with time bounds.

Véronique Bruyère, Quentin Hautem, and Jean-François Raskin.
On the complexity of heterogeneous multidimensional games.
References II

Average-energy games.

Krishnendu Chatterjee and Laurent Doyen.
Energy parity games.

Krishnendu Chatterjee, Laurent Doyen, Mickael Randour, and Jean-François Raskin.
Looking at mean-payoff and total-payoff through windows.

Krishnendu Chatterjee, Thomas A. Henzinger, and Marcin Jurdzinski.
Mean-payoff parity games.

Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman.
Generalized parity games.

Krishnendu Chatterjee, Mickael Randour, and Jean-François Raskin.
Strategy synthesis for multi-dimensional quantitative objectives.
References III

Hugo Gimbert and Wieslaw Zielonka.
Games where you can play optimally without any memory.

Marcin Jurdzinski, Ranko Lazic, and Sylvain Schmitz.
Fixed-dimensional energy games are in pseudo-polynomial time.

Eryk Kopczynski.
Half-positional determinacy of infinite games.

Stéphane Le Roux, Arno Pauly, and Mickael Randour.
Extending finite-memory determinacy by Boolean combination of winning conditions.
Yaron Velner, Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, Alexander Moshe Rabinovich, and Jean-François Raskin.
The complexity of multi-mean-payoff and multi-energy games.

Yaron Velner.
Robust multidimensional mean-payoff games are undecidable.