Hairy Black Holes & Boson Stars: From shift-symmetry to spontaneous scalarization

Ludovic Ducobu

Theoretical and mathematical physics
University of Mons

RTG Workshop
25-27 October 2019
Plan

1. Introduction
2. Model
3. Equations of motion
 - Equations of motion
 - Ansatz
 - Boundary conditions
4. Results
 - Black holes
 - Shift-symmetry
 - Spontaneous scalarization
 - New results
 - Boson stars
 - Domain of existence
 - Classical stability
5. Conclusion
Plan

1. Introduction

2. Model

3. Equations of motion
 - Equations of motion
 - Ansatz
 - Boundary conditions

4. Results
 - Black holes
 - Shift-symmetry
 - Spontaneous scalarization
 - New results
 - Boson stars
 - Domain of existence
 - Classical stability

5. Conclusion
Introduction: Why should we modify general relativity?
Introduction: Why should we modify general relativity?

Despite consequential success . . .

- Offer a geometrical explanation of gravitational process [elegant]
- Allow to explain many phenomenons:
 1. Mercury perihelion problem
 2. Existence and shape of gravitational waves: GW150914 (2016)

[many experimental checks]
Introduction: *Why should we modify general relativity?*

Despite consequential success . . .

- Offer a geometrical explanation of gravitational process [elegant]
- Allow to explain many phenomenons:
 1. Mercury perihelion problem
 2. Existence and shape of gravitational waves: GW150914 (2016)

 [many experimental checks]

. . . there are some unexplained phenomena within General Relativity (GR):

- Origin and value of the cosmological constant
- Low intensity of gravitational interaction
- Existence of singularities within space-time
- Origin and composition of dark matter and dark energy
- Accelerated expansion of the universe

Not all of them are related to quantum correction problems!
Introduction: *How should we modify general relativity?*

There exist numerous attempts to answer this question.
Introduction: *How should we modify general relativity?*

There exist numerous attempts to answer this question.

One of them is to consider that the unratated phenomena are due to unknown degrees of freedom (that can be interpreted as new particles or as a new component in the description of gravity).
Introduction: *How should we modify general relativity?*

There exist numerous attempts to answer this question.

One of them is to consider that the unrated phenomena are due to unknown degrees of freedom (that can be interpreted as new particles or as a new component in the description of gravity).

In GR, all the degrees of freedom are encoded in the metric $g_{\mu\nu}$. But, formally, the equivalence principle does not rule out the possible existence of other kind of fields in the model.
Introduction : *How should we modify general relativity?*

The most simple candidate for these degrees of freedom is a scalar field.
The most simple candidate for these degrees of freedom is a scalar field.

- Simplest covariant object
- Important element of many models:
 - Cosmology
 - Standard model of particle physics
 - Kaluza-Klein reduction
 - Effective theory
 - ...
- Also experimentally motivated since the Brout-Englert-Higgs boson’s discovery (CERN 2012)
Introduction: Why not considering the simplest case?

Why not just using $\mathcal{L}_{EKG} = \kappa (R - 2\Lambda) - \nabla_\mu \phi \nabla^{\mu} \phi - V(\phi)$?
Introduction : Why not considering the simplest case?

No Hair Theorem (*Schematically*)

Consider an asymptotically flat black hole spacetime

Hypothesis 1 : (Symmetries of spacetime)

Hypothesis 2 : (Coupling condition)

Hypothesis 3 : (Symmetries of the scalar field)

Hypothesis 4 : (“Energetic” condition)

Then, the scalar field must be trivial: \(\phi (x^\mu) = c^te, \forall x^\mu \).
Introduction: Why not considering the simplest case?

No Hair Theorem (Schematically)

Consider an asymptotically flat black hole spacetime

Hypothesis 1: (Symmetries of spacetime)
Hypothesis 2: (Coupling condition)
Hypothesis 3: (Symmetries of the scalar field)
Hypothesis 4: ("Energetic" condition)

Then, the scalar field must be trivial: \(\phi (x^\mu) = c^{te}, \forall x^\mu \).

Note: Generically, the proof makes no use of the Einstein's equations. It just uses the scalar field equation defined thanks to hypothesis 2.
Plan

1. Introduction
2. Model
3. Equations of motion
 - Equations of motion
 - Ansatz
 - Boundary conditions
4. Results
 - Black holes
 - Shift-symmetry
 - Spontaneous scalarization
 - New results
 - Boson stars
 - Domain of existence
 - Classical stability
5. Conclusion
Model: Curvature induced scalarization

We are interested in scalar tensor theory where a complex scalar field ϕ is non-minimally coupled to gravity by means of a curvature invariant $I(g)$:
We are interested in salar tensor theory where a complex scalar field ϕ is non-minimally coupled to gravity by means of a curvature invariant $\mathcal{I}(g)$:

$$S = \int \left[\frac{1}{16\pi G} R - \nabla_\mu \phi^* \nabla^\mu \phi - V(\phi) + f(\phi) \mathcal{I}(g) \right] \sqrt{-g} d^4x.$$
Model : Curvature induced scalarization

We are interested in salar tensor theory where a complex scalar field \(\phi \) is non-minimally coupled to gravity by means of a curvature invariant \(\mathcal{I}(g) \):

\[
S = \int \left[\frac{1}{16\pi G} R - \nabla_\mu \phi^* \nabla^\mu \phi - V(\phi) + f(\phi) \mathcal{I}(g) \right] \sqrt{-g} d^4 x.
\]

If we assume that both \(V(\phi) \) and \(f(\phi) \) are functions of \(|\phi| = \sqrt{\phi^* \phi} \), the model possess a global \(U(1) \) symmetry : \(\phi \rightarrow e^{i\alpha} \phi \).
Model: Curvature induced scalarization

\[S = \int \left[\frac{1}{16\pi G} R - \nabla_\mu \phi^* \nabla^\mu \phi - V(\phi) + f(\phi) \mathcal{I}(g) \right] \sqrt{-g} d^4 x. \]
Model: Curvature induced scalarization

\[S = \int \left[\frac{1}{16\pi G} R - \nabla_\mu \phi^* \nabla^\mu \phi - V(\phi) + f(\phi) \mathcal{I}(g) \right] \sqrt{-g} d^4 x. \]

We will focus on a coupling to the Gauss-Bonnet invariant:

\[\mathcal{I}(g) = \mathcal{L}_{GB} \equiv R^2 - 4 R_{\mu\nu} R^{\mu\nu} + R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma}. \]
Model : Curvature induced scalarization

\[S = \int \left[\frac{1}{16\pi G} \left(R - \nabla_\mu \phi^* \nabla^\mu \phi - V(\phi) + f(\phi) \mathcal{I}(g) \right) \right] \sqrt{-g} d^4 x. \]

We will focus on a coupling to the Gauss-Bonnet invariant:

\[\mathcal{I}(g) = \mathcal{L}_{GB} \equiv R^2 - 4 R_{\mu\nu} R^{\mu\nu} + R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma}. \]

The functions \(V \) and \(f \) are choosen as:

\[V(\phi) = m^2 |\phi|^2 + \lambda_4 |\phi|^4 + \lambda_6 |\phi|^6, \]

\[f(\phi) = \gamma_1 |\phi| + \gamma_2 |\phi|^2. \]
Equations of motion

For the metric function:

\[G_{\mu\nu} = 8\pi G (T(\phi)_{\mu\nu} + T(I)_{\mu\nu}) , \]

where

\[T(\phi)_{\mu\nu} = \nabla_\mu \phi \nabla_\nu \phi^* - (\nabla_\alpha \phi \nabla_\alpha \phi^* + V(\phi)) g_{\mu\nu} , \]

and

\[T(I)_{\mu\nu} = - (g_{\mu\rho} g_{\nu\sigma} + g_{\nu\rho} g_{\mu\sigma}) \varepsilon^{\rho\alpha\gamma\delta} \varepsilon^{\beta\sigma\lambda\tau} R_{\gamma\delta\lambda\tau} \nabla_\alpha \nabla_\beta f(\phi) , \]

with \(\varepsilon^{\rho\alpha\gamma\delta} \) the Levi-Civita tensor.

For the scalar field:

\[-\Box \phi = - \frac{\partial V}{\partial \phi} \phi^* + \frac{\partial f}{\partial \phi} \phi^* I(g) , \]

with \(\Box = \nabla_\mu \nabla_\mu \).
Equations of motion

For the metric function :

\[G_{\mu\nu} = 8\pi G \left(T^{(\phi)}_{\mu\nu} + T^{(I)}_{\mu\nu} \right), \]

where

\[T^{(\phi)}_{\mu\nu} = \nabla_{(\mu} \phi \nabla_{\nu)} \phi^* - (\nabla_{\alpha} \phi^* \nabla^{\alpha} \phi + V(\phi)) g_{\mu\nu}, \]

and

\[T^{(I)}_{\mu\nu} = - (g_{\mu\rho} g_{\nu\sigma} + g_{\nu\rho} g_{\mu\sigma}) \varepsilon^{\rho\alpha\gamma\delta} \varepsilon^{\beta\sigma\lambda\tau} R_{\gamma\delta\lambda\tau} \nabla_{\alpha} \nabla_{\beta} f(\phi), \]

with \(\varepsilon^{\rho\alpha\gamma\delta} \) the Levi-Civita tensor.

For the scalar field :

\[-\Box \phi = -\partial V/\partial \phi^* + \partial f/\partial \phi I(g), \]
Equations of motion

For the metric function:

\[G_{\mu\nu} = 8\pi G \left(T_{\mu\nu}^{(\phi)} + T_{\mu\nu}^{(I)} \right), \]

where

\[T_{\mu\nu}^{(\phi)} = \nabla_\mu \phi \nabla_\nu \phi^* - (\nabla_\alpha \phi^* \nabla^\alpha \phi + V(\phi)) g_{\mu\nu}, \]

and

\[T_{\mu\nu}^{(I)} = - (g_{\mu\rho} g_{\nu\sigma} + g_{\nu\rho} g_{\mu\sigma}) \varepsilon^{\rho\alpha\gamma\delta} \varepsilon^{\beta\sigma\lambda\tau} R_{\gamma\delta\lambda\tau} \nabla_\alpha \nabla_\beta f(\phi), \]

with \(\varepsilon^{\rho\alpha\gamma\delta} \) the Levi-Civita tensor.

For the scalar field:

\[-\Box \phi = - \frac{\partial V}{\partial \phi^*} + \frac{\partial f}{\partial \phi^*} I(g), \]

with \(\Box = \nabla^\mu \nabla_\mu \).
Ansatz

For the metric function:

\[d\sigma^2 = -N(r) \, dt^2 + \frac{1}{N(r)} \, dr^2 + g(r) \left(d\theta^2 + \sin^2 \theta \, d\phi^2 \right), \]

where we fix the gauge freedom in the definition of the \(r \) coordinate by setting \(g(r) = r^2 \).

For the scalar field:

\[\phi(x^\mu) = e^{-i\omega t} \phi(r), \]

where \(\omega \) is a constant real parameter.
Ansatz

For the metric function:
We will focus on a spherically symmetric space-time.
On an appropriate coordinate system \((t, r, \theta, \varphi)\), the metric read

\[
\text{d}s^2 = -N(r)\sigma^2(r)\text{d}t^2 + \frac{1}{N(r)}\text{d}r^2 + g(r)(\text{d}\theta^2 + \sin^2 \theta \text{d}\varphi^2),
\]

where we fix the gauge freedom in the definition of the \(r\) coordinate by setting

\[
g(r) = r^2.
\]

For the scalar field:

Ansatz

For the metric function:

We will focus on a spherically symmetric space-time. On an appropriate coordinate system \((t, r, \theta, \varphi)\), the metric read

\[
\text{d}s^2 = -N(r)\sigma^2(r)\text{d}t^2 + \frac{1}{N(r)}\text{d}r^2 + g(r)(\text{d}\theta^2 + \sin^2 \theta \text{d}\varphi^2),
\]

where we fix the gauge freedom in the definition of the \(r\) coordinate by setting

\[
g(r) = r^2.
\]

For the scalar field:

In the same coordinate system, we choose a scalar field of the form

\[
\phi(x^\mu) = e^{-i\omega t} \phi(r),
\]

where \(\omega\) is a constant real parameter.
Reduced equations

Within this ansatz, the field equations can be rewritten in the form

\[N' = F_1(N, \sigma, \phi, \phi'; \omega), \]
\[\sigma' = F_2(N, \sigma, \phi, \phi'; \omega), \]
\[\phi'' = F_3(N, \sigma, \phi, \phi'; \omega), \]

where the functions \(F_1, F_2 \) and \(F_3 \) are involved algebraic functions of the fields \(N, \sigma, \phi \) and \(\phi' \).
Reduced equations

Within this ansatz, the field equations can be rewritten in the form

\[N' = F_1(N, \sigma, \phi, \phi'; \omega), \]
\[\sigma' = F_2(N, \sigma, \phi, \phi'; \omega), \]
\[\phi'' = F_3(N, \sigma, \phi, \phi'; \omega), \]

where the functions \(F_1, F_2 \) and \(F_3 \) are involved algebraic functions of the fields \(N, \sigma, \phi \) and \(\phi' \).

Note that we can reduce ourself to a real scalar field via a \(\omega \to 0 \) limit.
Boundary conditions for Black Holes

We impose an horizon at radius $r = r_h$:

$$N(r_h) = 0.$$

We further demand regularity of the solution at the horizon. This constrains the first derivative of the scalar field ϕ' at r_h:

$$\phi'(r_h) = -\frac{r_h^2}{\sqrt{\Delta}} \pm \sqrt{\Delta},$$

where

$$\Delta = r_h^4 - 96\gamma_2^2 - 384(\gamma_1^2 + 2\gamma_2\phi(r_h))^2 + \gamma_1\gamma_2\phi(r_h).$$

Finally, we require asymptotic flatness:

$$\sigma(r \to \infty) = 1, \quad \phi(r \to \infty) = 0.$$
Boundary conditions for Black Holes

- We impose an horizon at radius $r = r_h$:
 $$N(r_h) = 0.$$
Boundary conditions
for Black Holes

- We impose an horizon at radius $r = r_h$:
 \[N(r_h) = 0. \]

- We further demand regularity of the solution at the horizon. This constraint the first derivative of the scalar field $\phi'(r_h)$:
 \[\phi'(r_h) = \frac{-r_h^2 \pm \sqrt{\Delta}}{8r_h(\gamma_1 + 2\gamma_2\phi(r_h))}, \]
 where
 \[\Delta = r_h^4 - 96\gamma_1^2 - 384(\gamma_2^2\phi(r_h)^2 + \gamma_1\gamma_2\phi(r_h)). \]
Boundary conditions for Black Holes

- We impose an horizon at radius $r = r_h$:

$$N(r_h) = 0.$$

- We further demand regularity of the solution at the horizon. This constraint the first derivative of the scalar field $\phi'(r_h)$:

$$\phi'(r_h) = \frac{-r_h^2 \pm \sqrt{\Delta}}{8r_h(\gamma_1 + 2\gamma_2\phi(r_h))},$$

where

$$\Delta = r_h^4 - 96\gamma_1^2 - 384(\gamma_2^2\phi(r_h)^2 + \gamma_1\gamma_2\phi(r_h)).$$

- Finally, we require asymptotic flatness:

$$\sigma(r \to \infty) = 1, \quad \phi(r \to \infty) = 0.$$
Boundary conditions
for Boson Stars

The regularity of the solutions at the origin impose $N(0) = 1$, $\phi'(0) = 0$.

The asymptotic flatness is ensured by setting $\sigma(r \to \infty) = 1$, $\phi(r \to \infty) = 0$.
Boundary conditions
for Boson Stars

- The regularity of the solutions at the origin impose

\[N(0) = 1, \quad \phi'(0) = 0. \]
Boundary conditions

for Boson Stars

- The regularity of the solutions at the origin impose

 \[N(0) = 1 \, , \, \phi'(0) = 0. \]

- The asymptotic flatness is ensured by setting

 \[\sigma(r \to \infty) = 1 \, , \, \phi(r \to \infty) = 0. \]
1 Introduction

2 Model

3 Equations of motion
 - Equations of motion
 - Ansatz
 - Boundary conditions

4 Results
 - Black holes
 - Shift-symmetry
 - Spontaneous scalarization
 - New results
 - Boson stars
 - Domain of existence
 - Classical stability

5 Conclusion
The scalar field is real, i.e. \(\omega = 0 \) in \(\varphi(x) = e^{i\omega t} \varphi(r) \).

The potential contain no self-interaction so \(\lambda_4 = 0 \) in \(V(\varphi) = m_2 |\varphi|^2 + \lambda_4 |\varphi|^4 + \lambda_6 |\varphi|^6 \).

Unless explicitly stated, we will also assume the scalar field to be massless: \(m = 0 \).

The behaviour of the solutions is only due to the coupling function \(f(\varphi) = \gamma_1 \varphi + \gamma_2 \varphi^2 \).\[\text{Ludovic Ducobu}\]
\[\text{RTG Workshop}\]
\[\text{October 2019}\]
The scalar field is real, i.e. $\omega = 0$ in $\phi(x^\mu) = e^{i\omega t}\phi(r)$.
Hypothesis

- The scalar field is real, i.e. $\omega = 0$ in $\phi(x^\mu) = e^{i\omega t} \phi(r)$.
- The potential contain no self-interaction so $\lambda_4 = 0 = \lambda_6$ in $V(\phi) = m^2 |\phi|^2 + \lambda_4 |\phi|^4 + \lambda_6 |\phi|^6$.
- Unless explicitly stated, we will also assume the scalar field to be massless: $m = 0$.
Hypothesis

- The scalar field is real, i.e. $\omega = 0$ in $\phi(x^\mu) = e^{i\omega t} \phi(r)$.
- The potential contain no self-interaction so $\lambda_4 = 0 = \lambda_6$ in $V(\phi) = m^2|\phi|^2 + \lambda_4|\phi|^4 + \lambda_6|\phi|^6$.
- Unless explicitly stated, we will also assume the scalar field to be massless: $m = 0$.

The behaviour of the solutions is only due to the coupling function

$$f(\phi) = \gamma_1 \phi + \gamma_2 \phi^2.$$
Shift-symmetry \((\gamma_1 \neq 0, \gamma_2 = 0)\)

The equation of motion for \(\phi\) read

\[
\Box \phi = -\gamma_1 \mathcal{I}(g).
\]

The condition of regularity at the horizon reduces to

\[
\phi'(r_h) = \frac{-r_h^2 \pm \sqrt{\Delta}}{8r_h \gamma_1}, \quad \Delta = r_h^4 - 96\gamma_1^2.
\]
Shift-symmetry \((\gamma_1 \neq 0, \gamma_2 = 0) \)

The equation of motion for \(\phi \) read

\[
\Box \phi = -\gamma_1 \mathcal{I}(g).
\]

The condition of regularity at the horizon reduces to

\[
\phi'(r_h) = \frac{-r_h^2 \pm \sqrt{\Delta}}{8r_h \gamma_1}, \quad \Delta = r_h^4 - 96 \gamma_1^2.
\]

Consequently, the condition of positivity of the discriminant \(\Delta \) constraint the accessible values of \(\gamma_1 \):

\[
\Delta \geq 0 \iff \gamma_1 \leq r_h^2 \sqrt{1/96} \approx r_h^2 \times 0.1021.
\]
Shift-symmetry \((\gamma_1 \neq 0, \gamma_2 = 0)\)

\[
\phi'(r_h) = \frac{-r_h^2 \pm \sqrt{\Delta}}{8r_h \gamma_1}, \quad \Delta = r_h^4 - 96\gamma_1^2.
\]
Shift-symmetry ($\gamma_1 \neq 0$, $\gamma_2 = 0$)

$$\phi'(r_h) = \frac{-r_h^2 \pm \sqrt{\Delta}}{8 r_h \gamma_1}, \quad \Delta = r_h^4 - 96 \gamma_1^2.$$

- In the following, we will focus on solutions corresponding to the “+” sign.
 - Solution corresponding to “+” sign \leftrightarrow approach regularly Schwarschild solution in the $\gamma_1 \to 0$ limit.
 - Solution corresponding to “−” sign \leftrightarrow no regular limit for $\gamma_1 \to 0$.

Ludovic Ducobu

RTG Workshop

October 2019
Shift-symmetry ($\gamma_1 \neq 0, \gamma_2 = 0$)

$$\phi'(r_h) = \frac{-r_h^2 \pm \sqrt{\Delta}}{8r_h\gamma_1}, \quad \Delta = r_h^4 - 96\gamma_1^2.$$

- In the following, we will focus on solutions corresponding to the “+” sign.
 - Solution corresponding to “+” sign ↔ approach regularly Schwarschild solution in the $\gamma_1 \to 0$ limit.
 - Solution corresponding to “−” sign ↔ no regular limit for $\gamma_1 \to 0$.

- On this branch, solutions exists for $\gamma_1 \in \left[0, r_h^2\sqrt{1/96}\right]$.
Shift-symmetry \((\gamma_1 \neq 0, \gamma_2 = 0)\)

\[
\phi'(r_h) = \frac{-r_h^2 \pm \sqrt{\Delta}}{8r_h \gamma_1}, \quad \Delta = r_h^4 - 96\gamma_1^2.
\]

- In the following, we will focus on solutions corresponding to the “+” sign.
 - Solution corresponding to “+” sign \(\leftrightarrow\) approach regularly Schwarschild solution in the \(\gamma_1 \rightarrow 0\) limit.
 - Solution corresponding to “−” sign \(\leftrightarrow\) no regular limit for \(\gamma_1 \rightarrow 0\).

- On this branch, solutions exists for \(\gamma_1 \in \left[0, r_h^2 \sqrt{1/96}\right]\).

- Since \(\phi'(r_h)\) does only depend on \(r_h\) and \(\gamma_1\), for a fixed \(r_h\), there is only one possible solution for each value of \(\gamma_1\). (no excited solutions)
Spontaneous scalarization \((\gamma_1 = 0, \gamma_2 \neq 0)\)

The equation of motion for \(\phi\) read

\[
\Box \phi = -2\gamma_2 \phi \mathcal{I}(g) \iff \hat{D} \phi = \gamma_2 \phi.
\]

The condition of regularity at the horizon reduces to

\[
\phi'(r_h) = \frac{-r_h^2 \pm \sqrt{\Delta}}{16r_h \gamma_2 \phi(r_h)}, \quad \Delta = r_h^4 - 384\gamma_2^2 \phi(r_h)^2.
\]
Spontaneous scalarization \((\gamma_1 = 0, \gamma_2 \neq 0)\)

The equation of motion for \(\phi\) read

\[
\Box \phi = -2\gamma_2 \phi \mathcal{I}(g) \iff \hat{D} \phi = \gamma_2 \phi.
\]

The condition of regularity at the horizon reduces to

\[
\phi'(r_h) = \frac{-r_h^2 \pm \sqrt{\Delta}}{16r_h \gamma_2 \phi(r_h)}, \quad \Delta = r_h^4 - 384\gamma_2^2 \phi(r_h)^2.
\]

In this case the pattern of solutions is very different:

- Solutions exists only for \(\gamma_2 \in [\gamma_{2,c}, \gamma_{2,\text{max}}]\), whith \(\gamma_{2,c} > 0\).
- Excited solutions exists.
Spontaneous scalarization \((\gamma_1 = 0, \gamma_2 \neq 0) \)

Origin of the critical values

The existence of regular solutions require 3 conditions:

\[\Delta \geq 0, \; \gamma_2 \neq 0 \; \text{and} \; \phi(r_h) \neq 0 \]

\[\rightarrow \gamma_{2,c} : \text{Correspond to} \; \Delta \rightarrow 0. \]

\[\rightarrow \gamma_{2,max} : \text{Correspond to} \; \phi(r_h) \rightarrow 0. \]
Spontaneous scalarization \((\gamma_1 = 0, \gamma_2 \neq 0)\)

Origin of the critical values

The existence of regular solutions require 3 conditions :

\[\Delta \geq 0, \ \gamma_2 \neq 0 \text{ and } \phi(r_h) \neq 0 \]

\[\rightarrow \gamma_2,c : \text{Correspond to } \Delta \to 0. \]

\[\rightarrow \gamma_2,\text{max} : \text{Correspond to } \phi(r_h) \to 0. \]

This pattern can be understood when examining the case of a test field :
On a fixed Schwarzschild background the equation for \(\phi\) can be written as

\[
\frac{r^4}{48M} \frac{d}{dr} \left[r^2 \left(1 - \frac{2M}{r} \right) \frac{d}{dr} \phi \right] = \gamma_2 \phi \iff \hat{D}_{Sch} \phi = \gamma_2 \phi.
\]

\[\Rightarrow \gamma_2 \text{ must be an eigen value of the differential operator } \hat{D}_{Sch} \leftrightarrow \gamma_{2,\text{max}}. \]
Spontaneous scalarization \((\gamma_1 = 0, \gamma_2 \neq 0)\)

unexcited solutions

\[
\Delta \phi(r_h)
\]
New results \((\gamma_1 \neq 0, \gamma_2 \neq 0)\)

unexcited solutions
New results \((\gamma_1 \neq 0, \gamma_2 \neq 0) \)

excited solutions
New results \((\gamma_1 \neq 0, \gamma_2 \neq 0)\)

influence of a mass term

![Graph showing the influence of a mass term with different mass values]
1 Introduction

2 Model

3 Equations of motion
 - Equations of motion
 - Ansatz
 - Boundary conditions

4 Results
 - Black holes
 - Shift-symmetry
 - Spontaneous scalarization
 - New results
 - Boson stars
 - Domain of existence
 - Classical stability

5 Conclusion
Hypothesis
Hypothesis

- The scalar field is complex, of the form $\phi(x^\mu) = e^{i\omega t} \phi(r)$ with $\omega \neq 0$. Accordingly, the Lagrangian possesses a global $U(1)$ symmetry. The associated Noether charge will be denoted Q.

$V(\phi) = m^2 |\phi|^2 + \lambda_4 |\phi|^4 + \lambda_6 |\phi|^6$ and should contain at least a mass term, so $m > 0$.

More precisely, we will concentrate our study to two cases:

• no self-interaction: $m \neq 0$, $\lambda_4 = 0$, $\lambda_6 = 0$,

• self-interaction: $m \neq 0$, $\lambda_4 = -2m^2 \phi^2$, $\lambda_6 = m^2 \phi^4$.

In this case, the potential is $V(\phi) = m^2 \phi^2 (1 - \phi^2 \phi^2)^2$. It possesses three degenerate minima located at $\phi = 0, \pm \phi_c$.
Hypothesis

- The scalar field is complex, of the form \(\phi(x^\mu) = e^{i\omega t} \phi(r) \) with \(\omega \neq 0 \). Accordingly, the Lagrangian possesses a global \(U(1) \) symmetry. The associated Noether charge will be denoted \(Q \).

- The potential is of the form \(V(\phi) = m^2|\phi|^2 + \lambda_4|\phi|^4 + \lambda_6|\phi|^6 \) and should contain at least a mass term, so \(m > 0 \). More precisely, we will concentrate our study to two cases:
 - no self-interaction: \(m \neq 0, \lambda_4 = 0, \lambda_6 = 0 \),
 - self-interaction: \(m \neq 0, \lambda_4 = -2 \frac{m^2}{\phi_c^2}, \lambda_6 = \frac{m^2}{\phi_c^4} \). In this case, the potential is \(V(\phi) = m^2\phi^2 \left(1 - \frac{\phi^2}{\phi_c^2} \right)^2 \). It possesses three degenerate minima located at \(\phi = 0, \pm \phi_c \).
Hypothesis

- The scalar field is complex, of the form $\phi(x^\mu) = e^{i\omega t} \phi(r)$ with $\omega \neq 0$. Accordingly, the Lagrangian possesses a global $U(1)$ symmetry. The associated Noether charge will be denoted Q.

- The potential is of the form $V(\phi) = m^2|\phi|^2 + \lambda_4|\phi|^4 + \lambda_6|\phi|^6$ and should contain at least a mass term, so $m > 0$. More precisely, we will concentrate our study to two cases:
 - no self-interaction: $m \neq 0$, $\lambda_4 = 0$, $\lambda_6 = 0$,
 - self-interaction: $m \neq 0$, $\lambda_4 = -2 \frac{m^2}{\phi_c^2}$, $\lambda_6 = \frac{m^2}{\phi_c^4}$. In this case, the potential is $V(\phi) = m^2 \phi^2 \left(1 - \frac{\phi^2}{\phi_c^2}\right)^2$. It possesses three degenerate minima located at $\phi = 0, \pm \phi_c$.

- The linear coupling to the Gauss-Bonnet term will be set to zero, so $\gamma_1 = 0$. In other words: $f(\phi) = \gamma_2 |\phi|^2$.
Solutions without self-interaction

\[\omega \]

\[M \]

- \(\gamma_2 = 0 \)
- \(\gamma_2 = 0.02 \)
- \(\gamma_2 = 0.05 \)
- \(\gamma_2 = 0.1 \)
- \(\gamma_2 = 0.2 \)
Solutions with self-interaction
The Noether charge associated to the global $U(1)$ symmetry, i.e. Q, will be interpreted as a number of particles. More precisely, Q will be seen as the number of bosons of mass m forming the star (of mass M). Within this interpretation, it is natural to perform a comparison between M and mQ:

- If $M < mQ$, we will say that the boson star is classically stable, since the total mass of the star M is lower than the "sum of its constituents" mQ.
- If $M > mQ$, following the same lines, we will say that the boson star is classically unstable.

In the following, we will report our results in terms of the quantity $\frac{M}{mQ}$:

$$\frac{M}{mQ} > \frac{1}{2} \Leftrightarrow \text{(un)stable}$$

Ludovic Ducobu
RTG Workshop
October 2019
Classical stability

The Noether charge associated to the global $U(1)$ symmetry, i.e. Q, will be interpreted as a number of particles. More precisely, Q will be seen as the number of bosons of mass m forming the star (of mass M).
Classical stability

The Noether charge associated to the global $U(1)$ symmetry, i.e. Q, will be interpreted as a number of particles. More precisely, Q will be seen as the number of bosons of mass m forming the star (of mass M). Within this interpretation, it is natural to perform a comparison between M and mQ.

If $M < mQ$, we will say that the boson star is classically stable, since the total mass of the star M is lower than the "sum of its constituents" mQ.

If $M > mQ$, following the same lines, we will say that the boson star is classically unstable.

In the following, we will report our results in terms of the quantity $M/mQ > < 1 ⇔ (un)stable$.

Ludovic Ducobu

RTG Workshop

October 2019 29 / 32
Classical stability

The Noether charge associated to the gobal $U(1)$ symmetry, i.e. Q, will be interpreted as a number of particles. More precisely, Q will be seen as the number of bosons of mass m forming the star (of mass M). Within this interpretation, it is natural to perform a comparison between M and mQ:

- If $M < mQ$, we will say that the boson star is **classically stable**, since the total mass of the star M is lower than the “sum of its constituents” mQ.
Classical stability

The Noether charge associated to the global $U(1)$ symmetry, i.e. Q, will be interpreted as a number of particles. More precisely, Q will be seen as the number of bosons of mass m forming the star (of mass M). Within this interpretation, it is natural to perform a comparison between M and mQ:

- If $M < mQ$, we will say that the boson star is **classically stable**, since the total mass of the star M is lower than the "sum of its constituents" mQ.
- If $M > mQ$, following the same lines, we will say that the boson star is **classically unstable**.
Classical stability

The Noether charge associated to the global $U(1)$ symmetry, i.e. Q, will be interpreted as a number of particles. More precisely, Q will be seen as the number of bosons of mass m forming the star (of mass M). Within this interpretation, it is natural to perform a comparison between M and mQ:

- If $M < mQ$, we will say that the boson star is **classically stable**, since the total mass of the star M is lower than the “sum of its constituents” mQ.

- If $M > mQ$, following the same lines, we will say that the boson star is **classically unstable**.

In the following, we will report our results in terms of the quantity $\frac{M}{mQ}$:

$$\frac{M}{mQ} > 1 \iff \text{(un)stable}.$$
Plan

1 Introduction
2 Model
3 Equations of motion
 - Equations of motion
 - Ansatz
 - Boundary conditions
4 Results
 - Black holes
 - Shift-symmetry
 - Spontaneous scalarization
 - New results
 - Boson stars
 - Domain of existence
 - Classical stability
5 Conclusion
Conclusions & outlooks

\[S = \int \left[\frac{1}{16\pi G} R - \nabla_\mu \phi^* \nabla^\mu \phi - V(\phi) + f(\phi) \mathcal{I}(g) \right] \sqrt{-g} d^4 x. \]

\[f(\phi) = \gamma_1 |\phi| + \gamma_2 |\phi|^2, \quad \mathcal{I}(g) = R^2 - 4R_{\mu\nu}R^{\mu\nu} + R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma}. \]
Conclusions & outlooks

\[
S = \int \left[\frac{1}{16\pi G} R - \nabla_\mu \phi^* \nabla^\mu \phi - V(\phi) + f(\phi) \mathcal{I}(g) \right] \sqrt{-g} d^4 x.
\]

\[
f(\phi) = \gamma_1 |\phi| + \gamma_2 |\phi|^2, \quad \mathcal{I}(g) = R^2 - 4R_{\mu\nu}R^{\mu\nu} + R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma}.
\]

Conclusions :

- We have illustrated how \(f(\phi) \) can lead to very different patterns when coupled to the Gauss-Bonnet invariant,
- In the case of black holes: our results link shift-symmetric theory to spontaneous scalarization,
- In the case of boson stars: we shown how a coupling function \(\gamma_2 |\phi|^2 \) could enlarge the domain and improve the stability of the solutions.
Conclusions & outlooks

\[
S = \int \left[\frac{1}{16\pi G} R - \nabla_\mu \phi^* \nabla^\mu \phi - V(\phi) + f(\phi) \mathcal{I}(g) \right] \sqrt{-g} d^4x.
\]

\[
f(\phi) = \gamma_1 |\phi| + \gamma_2 |\phi|^2, \quad \mathcal{I}(g) = R^2 - 4R_{\mu\nu} R^{\mu\nu} + R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma}.
\]

Conclusions:
- We have illustrated how \(f(\phi) \) can lead to very different patterns when coupled to the Gauss-Bonnet invariant,
- In the case of black holes: our results link shift-symmetric theory to spontaneous scalarization,
- In the case of boson stars: we shown how a coupling function \(\gamma_2 |\phi|^2 \) could enlarge the domain and improve the stability of the solutions.

Outlooks:
- Charged scalar field: \(\nabla_\mu \phi \rightarrow D_\mu \phi = (\partial_\mu + i e A_\mu) \phi \),
- Other types of coupling: \(\nabla_\mu \phi^* g^{\mu\nu} \nabla_\nu \phi \rightarrow \nabla_\mu \phi^* (\alpha g^{\mu\nu} + \eta G^{\mu\nu}) \nabla_\nu \phi \),
- Influence on matter: \(T_{\mu\nu} = (\rho + P) u_\mu u_\nu + P g_{\mu\nu} \).
Thank you for your attention!
Y. Brihaye & L. Ducobu,
“Hairy black holes, boson stars and non-minimal coupling to curvature invariants,”
[arXiv :1812.07438 [gr-qc]].