
On the impact of security vulnerabilities in
the npm package dependency network

Alexandre Decan
Tom Mens

Eleni Constantinou
Software Engineering Lab, University of Mons

Belgium
firstname.lastname@umons.ac.be

ABSTRACT
Security vulnerabilities are among the most pressing problems in
open source software package libraries. It may take a long time
to discover and fix vulnerabilities in packages. In addition, vul-
nerabilities may propagate to dependent packages, making them
vulnerable too. This paper presents an empirical study of nearly
400 security reports over a 6-year period in the npm dependency
network containing over 610k JavaScript packages. Taking into
account the severity of vulnerabilities, we analyse how and when
these vulnerabilities are discovered and fixed, and to which extent
they affect other packages in the packaging ecosystem in presence
of dependency constraints. We report our findings and provide
guidelines for package maintainers and tool developers to improve
the process of dealing with security issues.

KEYWORDS
software repository mining, software ecosystem, dependency net-
work, security vulnerability, semantic versioning

ACM Reference Format:
Alexandre Decan, Tom Mens, and Eleni Constantinou. 2018. On the impact
of security vulnerabilities in the npm package dependency network. In
MSR ’18: 15th International Conference on Mining Software Repositories, May
28–29, 2018, Gothenburg, Sweden . ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3196398.3196401

1 INTRODUCTION
Security vulnerabilities in software are among the most pressing
and important problems in our software-intensive society, given the
increasing reliance on software libraries and the potentially harm-
ful impact security vulnerabilities in such libraries may have [23].
According to a white paper by Contrast Security, a company pro-
viding products for software security, 80% of the code in today’s
applications comes from libraries and frameworks, and about one
fourth of library downloads have known vulnerabilities [24]. A
recent report by Snyk, one of the leading companies involved in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MSR ’18, May 28–29, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5716-6/18/05. . . $15.00
https://doi.org/10.1145/3196398.3196401

analysing software vulnerabilities in Node.js and Ruby packages,
summarises the current state of open source security [22]. Based on
an analysis of 430,000 websites, they report that no less than 77%
of them run at least one front-end library with a known security
vulnerability. They also observe an increase in the number of newly
published critical open source vulnerabilities.

A well-known example is the so-called Heartbleed Bug [12]. It
represented a serious security leak in the OpenSSL cryptography
library, allowing anyone on the Internet to read the memory of the
software systems relying on the vulnerable versions of the OpenSSL
software. The vulnerability was introduced in 2012 and remained
lingering until it was discovered and traced in April 2014. Upon its
discovery, half a million of servers certified by trusted authorities
were believed to be affected by the security vulnerability, connected
to a simple programming mistake.

The open source development community acknowledges the
importance of security vulnerabilities, and is taking active measures
to deal with them. For example, since October 2017, GitHub started
to monitor the dependencies of hosted Ruby and JavaScript projects,
and to trigger alerts when vulnerabilities are detected.1 They also
put into place a bounty hunting program to detect vulnerabilities
more rapidly.2 It is however too early to assess the positive impact
of such a program.

Little is known about, and even less automated support is avail-
able for, assessing the ecosystem-wide impact of security vulnera-
bilities in package dependency networks. Vulnerabilities, as well
as their fixes, may spread over the network through dependencies
between software packages. Analysing the propagation of secu-
rity vulnerabilities and their fixes is technically challenging and
computationally intensive, due to the intricate interactions of the
mechanisms of semantic versioning and dependency constraints.

This paper provides an empirical study of the propagation of se-
curity vulnerabilities and their fixes in the package release history of
the npm distribution of Node.js packages. A replication package of
our analysis is available on https://doi.org/10.5281/zenodo.1193577

Our study focuses on the following research questions:
• RQ0 How many packages are known to be affected by vul-
nerabilities?
• RQ1 How long do packages remain vulnerable?
• RQ2 When are vulnerabilities discovered?
• RQ3 When are vulnerabilities fixed?

1https://help.github.com/articles/about-security-alerts-for-vulnerable-
dependencies/
2https://bounty.github.com

https://doi.org/10.1145/3196398.3196401
https://doi.org/10.1145/3196398.3196401
https://doi.org/10.5281/zenodo.1193577
https://help.github.com/articles/about-security-alerts-for-vulnerable-dependencies/
https://help.github.com/articles/about-security-alerts-for-vulnerable-dependencies/
https://bounty.github.com

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Alexandre Decan, Tom Mens, and Eleni Constantinou

• RQ4 When are vulnerabilities fixed in dependent packages?

By providing answers to these questions, we aim to get a better
understanding of the extent and propagation of security vulnera-
bilities and their fixes ecosystem-wide. These insights may help in
prioritising the most problematic software packages and vulnera-
bilities, as well as in proposing guidelines for dependent packages
to reduce the risk of suffering from vulnerabilities.

The remainder of this paper is structured as follows. Section 2
motivates the choice of npm as a case study, presents the research
methodology, and details the data extraction process. Section 3 to
Section 7 answer the research questions and Section 8 puts these
results into perspective. Section 9 presents the threats to validity
of our research and Section 10 relates our research to other works.
Section 11 discusses the future work and Section 12 concludes.

2 METHODOLOGY
2.1 Selected package manager
In October 2017, GitHub reported that JavaScript is by far the most
popular language with 2.3M hosted open source projects.3 This is
more than twice the number of projects of the second-most popular
language, Python. In addition, the npm package distribution of
JavaScript packages was observed to have a higher distribution of
package dependencies than other package distributions [9, 10]. This
increases the potential impact of vulnerabilities. For these reasons
we selected npm for our empirical study.

The metadata of each npm package (such as the name, version,
and list of dependencies) are stored in a .json manifest file. De-
pendencies are used to specify other packages that are explicitly
required by each package. The range of allowed versions can be
restricted using dependency constraints.

npm package releases and dependency constraints rely on the
mechanism of semantic versioning. A simple set of rules and re-
quirements dictate how version numbers should be assigned to
package releases and incremented based on the three-number ver-
sion format Major.Minor.Patch. Package updates corresponding to
bug fixes that do not affect the API should only increment the Patch
version number, backward compatible updates should increment
the Minor version number, and backward incompatible updates
have to increment the Major version number.

Dependency constraints allow package maintainers to explicitly
select the desirable or allowed versions of a dependency, and to
explicitly exclude the undesirable ones, e.g., those that can contain
backward incompatible changes. Dependency constraints are typi-
cally used to specify a minimal (e.g., >= 1.2.3) or a maximal version
(e.g., < 1.3.0) of a dependency. Combinations of constraints can also
be expressed using specific notations. The npm package manager
relies on the semver tool4 to identify which are the version numbers
that satisfy a dependency constraint.

2.2 Identifying affected releases
In order to identify which releases of a package are affected by
a vulnerability, we need to consider the vulnerability constraint

3https://octoverse.github.com/
4https://docs.npmjs.com/misc/semver

Table 1: Releases for package B and its dependent package
D. A cell with coloured background indicates that the corre-
sponding release of B satisfies the vulnerability constraint
>= 1.1.0 and < 3.0.1.

release release dependency latest installable
time of B of D constraint release of B
T0 1.0.0 none
T1 0.1.0 1.x.x 1.0.0
T2 1.1.0 1.1.0
T3 2.0.0 1.1.0
T4 0.2.0 2.x.x 2.0.0
T5 3.0.0 2.0.0
T6 0.3.0 3.x.x 3.0.0
T7 3.0.1 3.0.1

expressed in the corresponding security report. Vulnerability con-
straints capture all the releases that are affected by the vulnerability.
For example, the security report of Figure 1 defines the vulnera-
bility constraint <1.1.4 and >=0.4.0 on package rendr and can be
used to determine when a vulnerable package starts and ends being
affected by the vulnerability.

Let us illustrate this by means of an example, shown in Table 1.
For readability purposes, we use the notation P@V to denote ver-
sion V of package P. The second column in the table shows the
different releases of a vulnerable package B corresponding to its
release date represented by a timestamp Ti in the first column.
Assume that a security report for B has vulnerability constraint
>= 1.1.0 and < 3.0.1. Based on this constraint, we identify releases
B@1.1.0, B@2.0.0 and B@3.0.0 as being affected by the vulnera-
bility. According to the dates of these releases, B is considered as
vulnerable from T2 (date of the first affected release B@1.1.0) until
just before T7 (date of the first fixed release B@3.0.1).

As a vulnerable package can affect packages that have a de-
pendency on it, we also compute the affected releases of those
dependent packages. The identification of such affected releases is
a bit more involved, since we need to take into account the depen-
dency constraint specified in the manifest of the dependent releases,
as well as the fact that it is the most recent release satisfying a de-
pendency constraint that is by default installed by the npm package
manager. This is, the release (of a required package) that is selected
for installation may change depending on when the installation is
performed, even if the dependency constraint remains the same.

Reconsidering the example shown in Table 1, assume that all
releases of package D depend on B. The third and fourth columns
show the different releases of D and their respective dependency
constraints onB. The fifth column shows the release of B that will be
automatically installed by the package manager when D is installed
(i.e., the latest available release of B satisfying the dependency
constraint).

Assume that D@0.1.0 has a dependency constraint 1.x.x on B.
This constraint is satisfied by bothB@1.0.0 andB@1.1.0. Depending
on the moment D@0.1.0 is installed, either B@1.0.0 or B@1.1.0 will
be selected. For instance, B@1.1.0 will be selected if D@0.1.0 is
installed afterT2 because B@1.1.0 is the latest release of B satisfying
the constraint at that time. On the other hand, B@1.0.0 will be

https://octoverse.github.com/
https://docs.npmjs.com/misc/semver

On the impact of security vulnerabilities in npm MSR ’18, May 28–29, 2018, Gothenburg, Sweden

selected if the installation is performed before T2 because B@1.1.0
was not yet available at that time. Notice that even if B@2.0.0 is the
latest available release of B at T3, it will never be selected during
the installation of D@0.1.0 since it does not satisfy the dependency
constraint 1.x.x.

In the example of Table 1, the cells with coloured background
indicate the respective releases of B that are affected by a security
vulnerability. Given that B@1.1.0 is affected by the vulnerability,
D@0.1.0 is also affected from T2 onward. Similarly, D@0.2.0 is
affected by the vulnerability because it relies on the affected release
B@2.0.0 as ofT4. Finally, D@0.3.0 either depends on B@3.0.0 (from
T6 until T7) or on B@3.0.1 (starting from T7). Given that B@3.0.0
is affected by the vulnerability while B@3.0.1 is not, D@0.3.0 is
only affected from T6 until T7. To sum up, package D is identified
as being vulnerable due to its dependency to B from T2 until T7.

2.3 Vulnerability Dataset
Snyk.io provides a continuous monitoring service aiming to help de-
velopers and organizations identify vulnerable packages on which
they depend. It contains a detailed list of security reports for differ-
ent package managers. For npm it includes information about the
vulnerability, the name of the affected package, the vulnerability
constraint specifying which releases of the package are concerned
by the security report, the discovery date indicating when the vul-
nerability was discovered, and the date of public exposure of the
vulnerability which is by definition greater than or equal to the
discovery date. The large majority of vulnerabilities in the dataset
have a publication date that is strictly later than the discovery date.

To each vulnerability a severity label (low, medium or high) is
assigned. This severity is assigned manually based on the impact
of the vulnerability and how easy it is to exploit it5 and seems to
be determined primarily by the vulnerability’s CVSS score6. An
example of such a report is provided in Figure 1.

Title: Cross-site Scripting (XSS)
Severity: Medium
Affected package: rendr
Vulnerability constraint: <1.1.4 and >=0.4.0
Discovery date: 10 March, 2016
Publication date: 8 May, 2017

Figure 1: Example of a security report for package rendr.

To identify the security vulnerabilities that affect npm packages,
we manually gathered from Snyk.io all 700 security reports that
were published before 2017-11-09. For each package identified in a
security report, we retrieved the list of its releases from the open
source discovery service libraries.io [19]. Their dataset, available
under a CC-BY-SA 4.0 licence, contains metadata from the manifest
of each package, based on the list of packages provided by the
official registry of the npm package manager.

Based on this list of releases, we identified which ones were
affected by the vulnerability following the process explained in Sec-
tion 2.2. We filtered out those vulnerabilities for which the affected
5See https://support.snyk.io/frequently-asked-questions/finding-vulnerabilities/how-
do-you-determine-the-severity-of-a-vulnerability
6See https://nvd.nist.gov/vuln-metrics

packages no longer exist in npm or for which none of the releases
satisfy the vulnerability constraint (i.e., they have been deleted from
npm). We also ignored vulnerability reports indicating a universal
vulnerability constraint (i.e., “*”) because such a constraint prevents
us from identifying which releases are not (yet or anymore) affected
by a vulnerability; either because there is no such “fixed” release, or
because the security report was not updated when the vulnerability
was fixed. We also removed vulnerabilities of type “Malicious Pack-
age”. They correspond to typosquatting packages, i.e., packages that
are introduced with names that are deliberately close to popular
packages in order to trap inattentive users to mistakenly install a
wrong and harmful package. We considered such cases as irrelevant
to our study since they do not introduce vulnerabilities in exist-
ing packages. Because of the applied filters, our reported results
should be regarded as a lower bound approximation of the impact
of security vulnderabilities in npm. The filtered dataset contains
399 vulnerabilities affecting 269 distinct packages. These packages
account for 14,931 distinct releases of which 6,752 are affected by a
vulnerability.

As a vulnerable package can affect packages that make use of
it, for each package affected by a vulnerability, we considered the
packages that have direct dependencies towards the vulnerable
ones. To do so, we analyzed the direct dependencies of all pack-
ages that were available on 2017-11-02 on libraries.io. These 610K
packages account for more than 4M releases and for more than
20M runtime dependencies. Among these packages, we identified
133,602 packages that directly depend on a vulnerable package and
52% of these packages, i.e., 72,470 packages, have at least one release
that relies on an affected release of a vulnerable package. Table 2
summarizes the descriptive statistics of the dataset.

Table 2: Descriptive summary of the npm dataset

610,097 npm packages
4,202,099 releases of npm packages
20,240,402 runtime dependencies

399 security vulnerability reports
269 packages affected by the vulnerability

14,931 releases of such vulnerable packages
6,752 releases affected by the vulnerability

133,602 packages depending on a vulnerable package
72,470 dependent packages affected by the vulnerability

3 RQ0: HOWMANY PACKAGES ARE KNOWN
TO BE AFFECTED BY VULNERABILITIES?

RQ0 aims to provide some initial understanding about how many
npm packages suffer from security vulnerabilities, and how this
number increases over time.

Figure 2 shows the number of discovered vulnerabilities in the
considered dataset. Straight and dotted lines correspond respec-
tively to the number of discovered vulnerabilities and the number
of corresponding packages. The results of Figure 2 suggest an in-
creasing number of new vulnerabilities and of vulnerable packages
over time. We observe that the large majority of vulnerabilities have
a medium or high severity (respectively 235 and 139 out of 399),
while there is a much lower number of low severity vulnerabilities

https://support.snyk.io/frequently-asked-questions/finding-vulnerabilities/how-do-you-determine-the-severity-of-a-vulnerability
https://support.snyk.io/frequently-asked-questions/finding-vulnerabilities/how-do-you-determine-the-severity-of-a-vulnerability
https://nvd.nist.gov/vuln-metrics

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Alexandre Decan, Tom Mens, and Eleni Constantinou

2012
2013

2014
2015

2016
2017

0

100

200

300

400 severity
low
medium
high
ALL

Figure 2: Evolution of the number of discovered vulnerabili-
ties (straight lines) and corresponding distinct packages (dot-
ted lines) per severity.

(25 out of 399). This might be due to the fact that vulnerabilities
that have a very limited impact in terms of security are considered
as not worth having a vulnerability report by maintainers.

While the dataset contains a very low number of packages af-
fected by vulnerabilities (269 out of a total of more than 610k), this
does not mean that other packages are not vulnerable. It is very
likely that many npm packages are not being monitored yet, and
that many vulnerabilities that are already discovered have not been
reported yet and therefore, are not included in our dataset. This
can explain the change in trend that can be observed in 2017 as, on
average, it takes nearly one year for a vulnerability to be published
after it is discovered.

Findings. The number of new vulnerabilities and affected
packages is growing over time. Most of the reported vulnera-
bilities are of medium or high severity.

4 RQ1: HOW LONG DO PACKAGES REMAIN
VULNERABLE?

While RQ0 revealed that the number of vulnerabilities is growing
over time, RQ1 focuses on how long packages are being affected
by vulnerabilities. Such information can be quite relevant since the
longer a package remains affected, the longer it will remain vulner-
able to malicious users. For example, in the case of the OpenSSL
cryptography library, the code corresponding to the Heartbleed
security vulnerability7 was introduced in December 2011, released
in OpenSSL@1.0.1 in March 2012, discovered in March 2014 and
fixed in April 2014, leaving OpenSSL open to attackers for more
than two years [12].

Our empirical analysis of RQ1 relies on the statistical technique
of survival analysis (a.k.a. event history analysis) [1]. The technique
models “time to event” data with the aim to estimate the survival
rate of a given population, i.e., the expected time duration until
the event of interest occurs (e.g., death of a biological organism,
failure of a mechanical component, recovery of a disease). Survival
analysis models take into account the fact that some observed
subjects may be “censored”, either because they leave the study
during the observation period, or because the event of interest was
not observed for them during the observation period. A common
non-parametric statistic used to estimate survival functions is the
Kaplan-Meier estimator [14].

7https://nvd.nist.gov/vuln/detail/CVE-2014-0160

0 10 20 30 40 50 60 70 80
delay (in months)

0.0

0.2

0.4

0.6

0.8

1.0

su
rv

iv
al

 p
ro

ba
bi

lit
y

severity
low
medium
high
ALL

Figure 3: Survival probability for event “vulnerability is
fixed” w.r.t. the date of first affected release.

Figure 3 shows Kaplan-Meier survival curves for the event “vul-
nerability is fixed” w.r.t. the date of the first affected release. Regard-
less of the severity of the vulnerability, it takes a surprisingly long
time before the vulnerability is fixed. One can observe that high
severity vulnerabilities take longer to fix than medium severity
ones, probably because it is more difficult to fix them. Low severity
vulnerabilities take even longer to fix, perhaps because developers
consider them as low priority. For example, it takes about 52 months
before 50% of all low severity vulnerabilities get fixed, 20 months
for 50% of all medium severity vulnerabilities, and 32 months for
50% of all high severity vulnerabilities. The admittedly long time
for fixing vulnerabilities confirms the need for more and better
support to find and deal with vulnerabilities, as will be discussed
in Section 8.

We carried out log-rank tests to compare whether statistically
significant differences could be found between the survival curves
of time-to-fix by severity. The differences were statistically con-
firmed at α = 0.95, i.e., the null hypotheses H0 assuming that the
survival curves are the same were rejected with p-values < 0.05.
This confirms that there is a statistically significant difference in
the time required to fix a vulnerability with respect to its severity.

low medium high ALL
severity

100

101

102

103

af
fe

ct
ed

 re
le

as
es

Figure 4: Distribution of the number of affected releases of
vulnerable packages by severity.

Figure 4 illustrates how many releases of a vulnerable package
are affected by each vulnerability, among all releases of the package
that were available when the vulnerability was discovered.

One can observe that the number of affected releases per vul-
nerable package is quite high (median is 39 for low, 21 for medium
and 26 for high severity). Even though these median values differ,
Mann-Whitney U tests did not reveal any statistically significant
difference. The affected releases represent a large proportion of
all the releases that were available for the vulnerable packages at
discovery time. Regardless of the severity, 75% of all vulnerable

https://nvd.nist.gov/vuln/detail/CVE-2014-0160

On the impact of security vulnerabilities in npm MSR ’18, May 28–29, 2018, Gothenburg, Sweden

packages have more than 90% of their releases affected (94% for
low, 80% for medium and 93% for high severity vulnerabilities).

These observations indicate that vulnerabilities are not limited
to only a few releases, but generally affect the vast majority of
releases available at discovery time. Therefore, it is generally not
feasible for users of a vulnerable package to avoid the vulnerability
by downgrading to a previous release. Hence, users have to wait
for the availability of a new release fixing the vulnerability.

Findings. It takes a long time to fix vulnerabilities regard-
less of their severity. The required time to fix vulnerabilities
varies depending on the severity. Three out of four vulnerable
packages have more than 90% of their releases affected by the
vulnerability at discovery time.

5 RQ2: WHEN ARE VULNERABILITIES
DISCOVERED?

RQ1 revealed that it can take a long time before a vulnerability gets
fixed since its introduction. RQ2 aims to study the main reason why
it takes such a long time. This could either be because it takes time
to discover the vulnerability lurking in the package, or because it
takes a long time to fix the vulnerability once it has been discovered.
Reconsidering the example of the Heartbleed vulnerability, it took
only a few days to fix the problem, while it took over 2 years to
discover it.

0 10 20 30 40 50 60 70 80
delay (in months)

0.0

0.2

0.4

0.6

0.8

1.0

su
rv

iv
al

 p
ro

ba
bi

lit
y

severity
low
medium
high
ALL

Figure 5: Survival probability for event “vulnerability is dis-
covered” w.r.t. the date of first affected release.

Figure 5 presents the Kaplan-Meier survival curves for event
“vulnerability is discovered” w.r.t. the date of first affected release.
Although vulnerabilities should be discovered early, this does not
seem to hold true in practice.

It takes more than 24 months to discover 50% of all vulnerabili-
ties. The survival curves of Figure 5 also reveal that it takes more
time to discover low severity vulnerabilities than medium or high
severity vulnerabilities. For instance, it takes 39, 20 and 31 months
to discover 50% of all vulnerabilities respectively for low, medium
and high severity. We used log-rank tests to compare the time to
discover vulnerabilities depending on their severity, and found a sta-
tistically significant difference (p < 0.05) when comparing low with
medium severity, and medium with high severity vulnerabilities.

Given the long time required to discover vulnerabilities, we
expect most of them to be found in old packages. Figure 6 shows
the distribution of package age at discovery time by vulnerability
severity, and confirms that most vulnerabilities, regardless of their
severity, are discovered in old packages. For instance, 75%, 50% and

low medium high ALL
severity

25

0

25

50

75

100

ag
e

at
 d

isc
ov

er
y

tim
e

(in
 m

on
th

s)

Figure 6: Violin plots of package age at discovery time by
vulnerability severity.

25% of all vulnerabilities are discovered in packages respectively
older than 13, 28 and 46 months. One possible explanation is that
younger packages have not yet had time to reach a wide audience
and to receive as much security-related attention as older packages.

Based on our observations, vulnerabilities of highest severity
are observed more often in older packages. To statistically verify
this, we compared the distributions between the different severity
categories using a one-sided non-parametric Mann-Whitney U test.
We found a statistically significant difference between medium
and high severity at p < 0.05. However, we only found a small
effect size for this difference using Cliff’s delta, indicating that the
frequency of older packages with high severity vulnerabilities is not
greatly different from the one of packages with medium severity
vulnerabilities.

Findings. It takes a long time to discover vulnerabilities, es-
pecially for those with low severity. Most vulnerabilities are
found in packages older than 28 months. Vulnerabilities of
high severity are observed more often in older packages.

6 RQ3: WHEN ARE VULNERABILITIES FIXED?
Not only one can expect a vulnerable package to be fixed, but also
to quickly release the fix in order to limit the exposure and exploita-
tion time of the vulnerability. This is particularly important if the
vulnerability has been made public. RQ3 investigates when vulner-
abilities are fixed with respect to the discovery and publication
dates.

low medium high ALL
severity

0.0

0.2

0.4

0.6

0.8

1.0

pr
op

or
tio

n
of

 v
ul

ne
ra

bi
lit

ie
s moment of fix

before discovery date
between disc. and pub. dates

after publication date
never fixed

Figure 7: Proportion of vulnerabilities by severity according
to the moment of fixing the vulnerability.

Figure 7 shows the proportion of vulnerabilities, by severity,
according to their moment of fix: before the vulnerability has been
discovered (“before discovery date” in Figure 7), between discovery
and publication date, after the vulnerability has been made public

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Alexandre Decan, Tom Mens, and Eleni Constantinou

(“after publication date”), or “never fixed”. We observe that the vast
majority of vulnerabilities are eventually fixed, regardless of their
severity. Indeed, only 3.5% of the vulnerabilities from our dataset
have not (yet) been fixed (resp. 4%, 3.4% and 3.6% for low, medium
and high severity).

Surprisingly, 30.9% of all vulnerabilities (resp. 24%, 28.9% and
35.3% for low, medium and high severity) were already fixed at
discovery time. One possible explanation is that the higher the
severity of a vulnerability is, the less likely the maintainers of an
affected package are willing to disclose the vulnerability and to
report its discovery while working on a fix. Finally, of the 65.7%
remaining vulnerabilities (i.e., those that were fixed after the dis-
covery date), a large majority (82% of them) are fixed before being
publicly announced. About 12% of all vulnerabilities are fixed only
after their official publication date (resp. 32.0%, 7.7% and 15.1%
for low, medium and high severity). This makes them particularly
vulnerable for being exploited by malevolent users. These results
indicate that maintainers seek to fix vulnerabilities before their pub-
lication, strengthening our hypothesis that they want to minimise
the chances of their exploitation.

Let us focus now on only those vulnerabilities that get fixed
after their discovery, in order to understand how long it takes to
fix discovered vulnerabilities. To achieve this, we ignored all vul-
nerabilities that were fixed before the reported discovery date (31%
of all vulnerabilities, as shown in Figure 7). For the remaining vul-
nerabilities, Figure 8 presents the survival curves of the probability
for event “vulnerability is fixed” w.r.t. their discovery date.

0 5 10 15 20 25 30 35 40
delay (in months)

0.0

0.2

0.4

0.6

0.8

1.0

su
rv

iv
al

 p
ro

ba
bi

lit
y

severity
low
medium
high
ALL

Figure 8: Survival probability for event “vulnerability is
fixed” w.r.t. vulnerability discovery time.

We observe that most vulnerabilities, regardless of their severity,
are fixed within a few months after their discovery. The probability
that a vulnerability is fixed within the month following its discovery
is 50%, while it is 74% after only 6 months. There is, however, a
non-negligible proportion of vulnerabilities that take a long time
to be fixed after their discovery. For instance, the probability that a
discovered vulnerability is not fixed after 12 months is still 17.4%.

Findings. Most vulnerabilities are fixed after the reported
discovery date but before they become public. Most of the
vulnerabilities are quickly fixed after their discovery, but there
is still a non-negligible proportion of vulnerabilities that take
a long time to be fixed.

7 RQ4: WHEN ARE VULNERABILITIES FIXED
IN DEPENDENT PACKAGES?

In the context of package dependency networks such as npm, pack-
ages cannot be considered in isolation. As highlighted in [2, 10, 13],
npm packages can have a high number of dependents, and these
dependencies may cause vulnerabilities to propagate to dependent
packages. This phenomenon can be clearly observed in our setting.
While our dataset contains 399 security vulnerabilities for 269 dis-
tinct npm packages, we identified 133,602 packages that directly
depended on these potentially vulnerable packages, and more than
half of them (72,470 i.e., 54%) have at least one release that relies
on an affected release of a vulnerable package.8 These 72,470 vul-
nerable dependents account for 920,661 releases, of which 411,169
are affected by a vulnerability because of one of their dependencies.
This advocates the need for better tools to monitor dependencies,
combined with support for indicating vulnerable releases.

In the light of the high impact of vulnerabilities in required
packages on their dependents, it is useful to study how quickly
a dependent package stops being affected by a vulnerability in a
required package. It is important to stress that, when a vulnerable
package fixes its vulnerability by introducing a new release, depen-
dent packages are not necessarily fixed as well, since dependency
constraints may cause these packages to continue to depend on
vulnerable releases even if fixed releases are already available.

Dependent packages can explicitly fix vulnerabilities in three
different ways: (1) by rolling back to an earlier version of the de-
pendency that is not affected by the vulnerability; (2) by updating
to a more recent version of the dependency that has fixed the vul-
nerability; or (3) by removing the dependency to the vulnerable
package.

0 5 10 15 20 25 30 35 40
delay (in months)

0.0

0.2

0.4

0.6

0.8

1.0

su
rv

iv
al

 p
ro

ba
bi

lit
y

low
medium
high
ALL

Figure 9: Survival probability for event “package is fixed”
w.r.t. vulnerability discovery time. Dependent packages are
shown as straight lines and upstream packages as dotted
lines.

Figure 9 presents the Kaplan-Meier survival curves of the prob-
ability for event “package is fixed”, w.r.t. discovery date of the
vulnerability. Straight and dotted lines correspond to the time it
takes for a package to be fixed for the dependent and upstream
packages, respectively. Dotted lines thus correspond to the survival
curves of Figure 8.

We observe that dependent packages need considerably more
time to be freed from vulnerabilities than their upstream packages.

8This is an over-approximation, as we cannot be sure that the (affected release of a)
dependent is truly concerned by the vulnerability in its dependency.

On the impact of security vulnerabilities in npm MSR ’18, May 28–29, 2018, Gothenburg, Sweden

We confirmed this using log-rank tests, and found a statistically sig-
nificant difference between dependent packages and their upstream
packages in the time required to fix a vulnerability for medium and
high severity vulnerabilities. While 50% of the upstream packages
are fixed within the month, only 33.1% of the dependent packages
are fixed within this time frame, and it takes nearly 14 months to
fix 50% of them.

These results illustrate the importance of having continuous
monitoring of dependencies, so that maintainers of dependent pack-
ages can be notified quickly of the presence of a vulnerability in
one of their dependencies, as well as the presence of a fix.

low medium high ALL
severity

0.0

0.2

0.4

0.6

0.8

1.0

pr
op

or
tio

n
of

 d
ep

en
de

nt
s moment of fix

before upstream fix
at upstream fix

after upstream fix
not fixed

Figure 10: Moment of fix for affected dependents.

We analysed in more depth the moment that affected dependents
are freed from a vulnerability in their upstream packages. Figure 10
presents the proportion of affected dependents that are fixed before,
simultaneously with, or after the fix of the upstream package. This
figure also shows the proportion of dependents that are never fixed.

The results indicate that only a small fraction (12.2%) of all de-
pendents are fixed before the upstream fix, either by removing
the dependency to the vulnerable package or by rolling back to a
non-affected release. Most dependents (44%) are fixed at the same
time as the upstream fix. This implies that the dependent package
automatically benefits from the fix, because the specified depen-
dency constraint allows to update to releases containing the fix. We
also observe that 10.8% of dependents are fixed after the upstream
fix, suggesting that “manually” managing dependencies and chang-
ing dependency constraints requires effort and leads to delays in
benefiting from vulnerability fixes.

More importantly, Figure 10 reveals that more than 33% of all
dependents affected by an upstream vulnerability are not (yet)
fixed. Zooming in on those dependent packages that have not (yet)
been fixed from a vulnerability in an upstream package, Figure 11
presents the proportion of these affected dependents according to
the status of the upstream fix.

We observe that only 4.8% of them are not fixed because the vul-
nerable upstream package has not yet published a fix (“no upstream
fix” in Figure 11). For affected dependent packages for which an
upstream fix is available, we consider their latest update date. The
packages that had some more recent update yet did not integrate
the upstream fix (“updated since upstream fix”) represent 21.3% of
the dependents that are not fixed. For dependent packages that were
not updated since an upstream fix was available we consider two
cases, to address the fact that recent upstream fixes may not have
had sufficient time to be taken into account in affected dependent
packages. Affected dependent packages for which the upstream

low medium high ALL
severity

0.0

0.2

0.4

0.6

0.8

1.0

pr
op

or
tio

n
of

 d
ep

en
de

nt
s no upstream fix

updated since upstream fix
recent upstream fix
not recently updated

Figure 11: Status of affected dependents that are not fixed.

fix was published during the last 6 months (“recent upstream fix”)
represent 17.2% of the unfixed dependents.9 Affected dependent
packages that have not been updated during the last 6 months (“not
recently updated”) represent 56.6% of the unfixed dependents. The
reason why such a large majority of affected dependents continue
to remain vulnerable even after the availability of a fix appears to be
that these dependent packages are no longer actively maintained.

Findings. More than half of all dependent packages are af-
fected by vulnerabilities in upstream packages. While 44% of
these affected dependents are automatically fixed together
with the vulnerable upstream package, about the same per-
centage need considerably more time than their upstream
packages to eliminate vulnerabilities. A large fraction of af-
fected dependent packages are not updated, even if an up-
stream fix is available. Improper or too restrictive use of de-
pendency constraints and unmaintained packages are the
main causes of dependent packages remaining vulnerable
even if fixes are available.

8 DISCUSSION
The npm package dependency network is witnessing an exponential
growth over time, both in terms of number of packages and of
package dependencies [9, 10]. It is therefore not surprising that we
found an increasing number of newly discovered vulnerabilities
over time (RQ0). Most of these vulnerabilities are of medium or
high severity, possibly because developers consider low severity
vulnerabilities as less important or fix them immediately, and hence
disclose them less frequently.

We also found that the impact of vulnerabilities on the package
release history was considerable (RQ1). For those packages that
were reported to suffer from a vulnerability, in 75% of the cases more
than 90% of all package releases were affected by the vulnerability.
This suggests that it can take a long time to fix vulnerabilities.

To avoid attackers abusing vulnerabilities present in a package,
it is not only important to fix vulnerabilities rapidly once they are
discovered, but it is equally important to discover them rapidly.
Our findings for RQ2 revealed that this is not the case in practice.
Regardless of the severity, it takes more than 24 months to discover
50% of all vulnerabilities. For high severity vulnerabilities this is
even 31 months.

RQ2 also revealed that most vulnerabilities are found in packages
older than 28 months, probably because younger packages have
not yet had time to reach a wide audience and to receive as much
9We also considered other thresholds (3, 9 and 12 months) and obtained similar results.

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Alexandre Decan, Tom Mens, and Eleni Constantinou

security related attention as older packages. We also found that
vulnerabilities of high severity are observed more often in older
packages. This finding might be explained by the fact that older
packages are more complex or more widely used than younger
packages, making vulnerabilities more intricate to fix and more
impactful, two factors increasing the computed severity.

Actionable result: Package maintainers should strive to dis-
cover vulnerabilities sooner, to avoid packages being vulnera-
ble to attackers without its maintainers even being aware of
it. More and better tool support is needed to help discovering
these vulnerabilities.
Only about one third of all medium and high severity vulnerabil-

ities are already fixed when their discovery is reported (RQ3). The
remaining two thirds are fixed later, or never at all. More than half
of all vulnerabilities get fixed after their discovery date, but before
official publication of the vulnerability, most likely because pack-
age maintainers strive to fix discovered vulnerabilities before they
become public. Nevertheless, there is still a non-negligible amount
of vulnerable packages that have a high risk of being abused, either
because the vulnerability is only fixed after its publication date
(11.8% of all packages) or never at all (3.5% of all packages).

Actionable result: Package maintainers should fix their vul-
nerable packages, ideally before the vulnerability is publicly
announced. Package managers should strive to detect and
deprecate packages that continue to suffer from vulnerabil-
ities, and should warn users when a package known to be
vulnerable is installed or becomes the target of a dependency.

Vulnerable package releases may also affect releases of depen-
dent packages. One of the developers of the libraries.io package
manager monitor confirmed the importance of package dependen-
cies in the context of security vulnerabilities (private communica-
tion, 11 September 2017): “it is fundamental to understand security
implications of *all* dependencies” and “to understand the security
problems of a product, they need to understand the security problems
of all its dependencies.”

Among the 133,602 packages depending on potentially vulner-
able packages, 72,470 dependent packages were affected by a vul-
nerability in an upstream package, accounting for 411,169 affected
releases. This implies that the presence of explicit package depen-
dencies increases the “impact” of security vulnerabilities by more
than an order of magnitude.

Not only the number of affected dependents is problematic, but
also the time required to free them from vulnerabilities in upstream
releases. RQ4 revealed some surprising and worrisome findings: a
large number of dependents remain affected for a long time after the
upstream package on which they depend has already eliminated the
vulnerability. This may be caused by dependency constraints pre-
venting dependents from automatically benefiting from upstream
fixes.

Actionable result: From the perspective of a package user,
there is no difference between a package containing a vulnera-
bility and a package being exposed to a vulnerability through
a dependency. Package maintainers should strive to reduce
their packages being at risk due to vulnerabilities in required

packages, by monitoring the security reports issued for these
packages, and by adapting their dependency constraints to
quickly benefit from security fixes.

Automated tool support can be of great help to achieve these
goals. For this purpose, in October 2017 GitHub introduced support
for tracking reported vulnerabilities in dependencies, and for alert-
ing affected dependents of potential security problems. Since our
dataset was gathered on 2017-11-09, it was too early to observe any
beneficial effects of such support.

Besides GitHub’s vulnerability tracking mechanism, many other
tools monitor vulnerable dependencies.10 Tools supporting npm
and JavaScript include commercial services (Snyk, Gemnasium,
SRC:CLR), as well as free/open-source solutions (RetireJS, Node
Security Project, OSSIndex, Dependency-check). While all these
tools search existing databases for vulnerability information, some
of them also recover information from their own private databases
and from mailing lists, bug-tracking systems and blogs. This diver-
sity of tools and data sources when reporting security issues makes
it impossible to get a complete historic view on the ecosystem’s
vulnerabilities.

Actionable result: Package maintainers and tool developers
should maintain and contribute to a single and common vul-
nerabilitiy database reporting all vulnerabilities related to the
package dependency network.

9 THREATS TO VALIDITY
Our empirical findings are restricted by the relatively limited num-
ber (700) of security reports for npm available in the dataset. Our
results therefore only represent a “lower bound” of the actual num-
ber of vulnerabilities, as it is very likely that many vulnerabilities
that have been found and fixed are not (yet) reported. This threat is
associated with the quality and completeness of the vulnerability
database used for the analysis [18].

When analysing the vulnerability constraints (i.e., the version
constraints specifying the range of package releases that are con-
sidered vulnerable), we observed that the large majority of these
constraints specify only an upper bound on the versions. It is diffi-
cult to say whether this effectively means that all previous releases
are affected, or whether no lower bound is specified out of igno-
rance. This may affect the reported “first affected release” and the
computed duration of a vulnerability. There is no easy way to miti-
gate this limitation.

Our analysis combined security reports from Snyk.io with his-
torical data of package releases and package dependencies from
libraries.io. For one package and a few releases referenced in the se-
curity reports, we found no match in libraries.io, probably because
they were removed from the npm registry before libraries.io started
collecting the data. While this could slightly affect our analyses,
the impact remains limited and does not affect our main findings.

With respect to the analysis of affected dependent packages
(RQ4), we only considered runtime dependencies between packages
(i.e., dependencies that are required to install and run the package).
While packages can also specify development dependencies (i.e.,

10https://techbeacon.com/13-tools-checking-security-risk-open-source-
dependencies-0

https://techbeacon.com/13-tools-checking-security-risk-open-source-dependencies-0
https://techbeacon.com/13-tools-checking-security-risk-open-source-dependencies-0

On the impact of security vulnerabilities in npm MSR ’18, May 28–29, 2018, Gothenburg, Sweden

dependencies needed during development of the package, e.g., test
frameworks), we ignored them in our analysis because they are
unlikely to affect the production environment.

Another threat concerns whether the vulnerable functionality
of an upstream package actually affects its dependent packages.
A recent report by SAFECode [3] suggests that developers must
also evaluate whether a product uses the specific functionality of
vulnerable third-party components. However, it is not feasible to
perform such a task in an automated way for hundreds or thousands
of modules and therefore, our work provides an upper limit on the
number of dependent packages that can be affected by dependencies
affected by security vulnerabilities. We prefer to stay on the safe
side, by always considering an affected dependent to be vulnerable,
even if it does not use any functionality involved in the vulnerability.
We believe it is good practice for maintainers to avoid depending
on versions of upstream packages that are known to be vulnerable,
regardless of whether the vulnerability will manifest itself.

A final threat relates to the generalisability of our findings. With
some amount of effort, the approachwe followed could be replicated
on other package managers and package dependency networks.
However, the results may be quite different from those we obtained
for npm, due to different policies, practices and culture that may
be specific to the package manager under study [4, 9].

10 RELATEDWORK
Package dependency networks. The research community of
software repository mining has carried out quite some research on
understanding the evolution of large networks of software package
dependencies. We only focus on the npm package dependency
network since it was the subject of our empirical analysis.

Wittern et al. [25] analysed a subset of npm packages, focus-
ing on the evolution of characteristics such as their dependencies,
update frequency, popularity, versioning policy and so on. They
observed that package maintainers use different versioning conven-
tions, despite the prescribed usage of semantic versioning, resulting
in different version adoption ratios. Abdalkareem et al. [2] empir-
ically analysed “trivial” npm packages and the risk of depending
on such packages. The results were inconclusive, in the sense that
depending on trivial packages can be useful and risk-free if they
are well implemented and tested.

Decan et al. [8, 9] quantitatively compared npm with three other
ecosystems (CRAN, PyPI and RubyGems), focusing on the topol-
ogy of their package dependency networks. A follow-up study [10]
expanded the comparison to 7 different packaging networks: Cargo,
CRAN, CPAN, npm, NuGet, Packagist and RubyGems. They ob-
served important differences between the considered ecosystems,
which could be explained by ecosystem specific factors. Similarly,
through a qualitative analysis based on developer interviews, Bog-
art et al. [4] compared npm with two other ecosystems (CRAN
and Eclipse) in order to understand the impact of community val-
ues, tools and policies on breaking changes. Specifically related to
package dependencies, they identified two main types of mitigation
strategies adopted by package developers to reduce their exposure
to changes in other packages: limiting the number of dependencies;
and depending only on “trusted” packages.

Security vulnerabilities. Software repository mining research
has focused a great deal on empirically studying defects or bugs
in evolving software systems, and to a lesser extent on security
vulnerabilities. Camillo et al. [6] empirically analysed the develop-
ment history of the Chromium project to examine the relationship
between bugs and vulnerabilities. Their statistical analysis revealed
that bugs and vulnerabilities are empirically dissimilar groups, war-
ranting the need for research targeting vulnerabilities specifically.

Perhaps the most closely related to our work is Hejderup’s mas-
ter thesis that focused on security vulnerabilities in npm [13]. He
investigated how long it takes for a developer to publish a fix after
the publication of a security report involving one of his packages,
and how many packages are affected by a vulnerability. The set
of vulnerabilities he studied was very limited compared to our
own dataset: it consisted of only 19 vulnerable packages and 1,029
vulnerable dependent packages. In addition, the way he identified
dependent package releases affected by vulnerabilities undermine
the validity of his results. More concretely, he considered the latest
release (among all releases) satisfying the dependency constraint,
ignoring that not all releases are available at installation time and
that the release selected for installation depends on the installation
date. In doing so, he either omitted affected packages in the case
where the vulnerability has been fixed later on, or included pack-
ages that became vulnerable only in some future release. For these
reasons, the reported findings differ from our own findings that are
based on a larger dataset with a more precise way of measuring
releases affected by vulnerabilities.

Several works investigate the impact of relying on vulnerable
dependencies, without specifically focusing on package dependency
networks. Lauinger et al. [16] examined the security implications
of relying on client-side JavaScript library usage. They examined
133K websites and found that 37% of these websites use at least
one library with a known vulnerability. Kula et al. [15] investigated
4,659 GitHub projects and more than 850K library dependency
migrations to find developer responsiveness to existing security
awareness mechanisms. They found that developers do not tend to
update third-party libraries, especially to fix vulnerabilities, while
81.5% of the studied systems remain with outdated dependencies.
By interviewing developers, they also found that 69% of them were
unaware of their vulnerable dependencies and their decision to
update their dependencies was based on project-specific priorities.

Cox et al. [7] acknowledged the increased security and back-
ward incompatibility risk when depending on outdated components.
Based on an industry benchmark, they evaluated a system-level
metric of “dependency freshness” and investigated the relationship
between outdated dependencies and security vulnerabilities. They
revealed that systems using outdated dependencies are four times
more likely to have security issues than systems that are up-to-date.
Derr et al. [11] investigated how outdated libraries are in the An-
droid ecosystem by conducting a survey with more than 200 app
developers. They reported that most apps use outdated libraries
and that almost 98% of 17K actively used library versions with a
known security vulnerability could be easily fixed by updating the
library to a fixed version. Massacci et al. [17] analyzed the evolution
of Firefox and found that a large fraction of vulnerabilities apply to
code that is no longer maintained in older versions, thus leaving
users that slowly upgrade to newer versions exposed to attacks.

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Alexandre Decan, Tom Mens, and Eleni Constantinou

Cadariu et al. [5] presented an automated Vulnerability Alert
Service (VAS) to track known vulnerabilities in industrial software
systems throughout their life cycle. They evaluated the usefulness
of this tool in the context of external software product quality mon-
itoring, and found that depending on external components with
known security vulnerabilities is a commonplace. Pham et al. [21]
conducted an empirical study and found that software vulnerabil-
ities are often recurring due to software reuse. They developed
SecureSync, a tool to automatically detect recurring software vul-
nerabilities on the systems that reuse source code or libraries. The
tool leads to high accuracy in the vulnerability detection task and
also identifies vulnerable code that has not been reported or fixed
yet. Di Penta et al. [20] conducted an empirical study to analyze the
evolution of source code vulnerabilities using three static analysis
tools. They report that they didn’t find a “silver bullet” detection
tool since there is almost no overlap between the results of different
tools.

11 FUTUREWORK
Our dataset was restricted to the 610K packages within npm. In
practice, the JavaScript ecosystem is much larger, including pack-
ages on public repositories like GitHub. npm packages may have
external dependencies to such packages and vice versa. A recent
striking example was a vulnerability affecting Electron on the Win-
dows platform.11 While Electron is distributed through the npm
package manager, the impact of the vulnerability reached far be-
yond this ecosystem, affecting many popular apps including Skype
and Slack. Considering such an “extended” package dependency
network will reveal a further increase in the potential impact of
vulnerable packages, and requires monitoring tools capable of com-
bining and integrating data from different sources.

Similar in spirit to the work of Decan et al. [10], we aim to
replicate our analysis on other open source package dependency
networks. This will enable us to study whether and why some
dependency networks are more fragile to security vulnerabilities
than others, and how these vulnerabilities propagate across the
network. Community-specific policies and practices, such as the
way in which version constraints are being used, may affect an
ecosystem’s resilience to vulnerabilities.

The empirical findings of this paper were reported using the vul-
nerability severity type (i.e., high, medium or low). An alternative
way to study vulnerabilities and their impact would be to rely on
their CWE type (Common Weakness Enumeration), a community-
developed list of common software security weaknesses.12 The
CWE type could be used to assess if certain vulnerabilities behave
differently (e.g., they take longer to detect or fix or they are more
prominent). While there are more than 700 CWE types, we only
found 40 distinct CWE types in the 399 security reports we analysed
for npm. The three most frequently observed types were CWE-79
“Cross-site Scripting” (105 occurrences), CWE-400 “Resource Ex-
haustion” (47 occ.) and CWE-94 “Code Injection” (18 occ.). We did
not use this information in our empirical analysis mainly because
the number of security reports per CWE type is low (median value

11https://www.theregister.co.uk/2018/01/24/skype_signal_slack_nherit_electron_vuln
12see https://cwe.mitre.org

is 3), hence any analysis broken down by CWE type is likely to lead
to statistically insignificant results.

This paper only considered vulnerable package releases and their
direct dependents, mainly because of the size of the npm package
dependency network and the computation time required to identify
and process all dependency constraints. It would be very desirable to
take into account transitive dependencies as well, because package
maintainers typically have a less clear idea on which packages they
depend indirectly. Taking into account transitive dependencies is
very likely to increase the impact of vulnerabilities by another order
of magnitude.

12 CONCLUSION
This paper presented an empirical study of the evolution of security
vulnerabilities in the npm package dependency network for Java-
Script packages. Based on survival analysis, we studied how fast
vulnerabilities are discovered, how long packages remain vulnera-
ble, when vulnerabilities are fixed, and how vulnerable packages
affect other packages that rely on them.

Our approach aimed at identifying packages releases affected by
a vulnerability in a precise way. We did so by taking into account
the version constraints specifying the security vulnerability, the
version constraints specified for package dependencies as well as
the exact release that is selected for installation depending on when
the installation is performed.

We studied 399 security reports, affecting 269 distinct packages
and 6,752 releases of these packages. Considering package depen-
dencies and taking into account dependency constraints, 72,470
other packages are affected by these vulnerable releases.

We observed that it often takes a long time to discover vulnera-
bilities since their introduction. One third of the vulnerabilities is
fixed at (or before) their discovery date, half of the vulnerabilities
take longer but are fixed before their publication date. The remain-
ing 15% or so are considered high risk since they are either fixed
after public announcement of the vulnerability, or not fixed at all.

The presence of dependency constraints plays an important role
in fixing vulnerabilities. More than 40% of all package releases
depending on a vulnerable package release cannot be fixed au-
tomatically by depending on a more recent release, because the
imposed dependency constraints do not allow them to be installed.

These findings scream for a higher awareness among npm pack-
age maintainers of the risks incurred by security vulnerabilities,
not only at the level of individual packages, but also at a wider
ecosystem level by considering package dependencies. Package
maintainers should also rely on better use of policies and auto-
mated tools to detect and fix vulnerabilities faster, and to reduce
the impact of vulnerabilities on dependent packages.

ACKNOWLEDGMENTS
This research was carried out in the context of FRQ-FNRS collabo-
rative research project R.60.04.18.F “SECOHealth”, FNRS Research
Credit J.0023.16 “Analysis of Software Project Survival” and Excel-
lence of Science project 30446992 SECO-Assist financed by FWO -
Vlaanderen and F.R.S.-FNRS.

https://cwe.mitre.org

On the impact of security vulnerabilities in npm MSR ’18, May 28–29, 2018, Gothenburg, Sweden

REFERENCES
[1] O. Aalen, O. Borgan, and H. Gjessing. 2008. Survival and Event History Analysis:

A Process Point of View. Springer. https://doi.org/10.1007/978-0-387-68560-1
[2] R. Abdalkareem, O. Nourry, S. Wehaibi, S. Mujahid, and E. Shihab. 2017. Why

do developers use trivial packages? An empirical case study on npm. In Joint
Meeting on Foundations of Software Engineering (ESEC/FSE). 385–395. https:
//doi.org/10.1145/3106237.3106267

[3] P. Bisht, M. Heim, M. Ifland, M. Scovetta, and T. Skinner. 2017. Managing Secu-
rity Risks Inherent in the Use of Third-party Components. (2017). Executive
Information Systems, Inc., White Paper No. Eleven.

[4] C. Bogart, C. Kästner, J. Herbsleb, and F. Thung. 2016. How to Break an API: Cost
Negotiation and Community Values in Three Software Ecosystems. In Int’l Symp.
Foundations of Software Engineering. https://doi.org/10.1145/2950290.2950325

[5] M. Cadariu, E. Bouwers, J. Visser, and A. van Deursen. 2015. Tracking known
security vulnerabilities in proprietary software systems. In Int’l Conf. Soft-
ware Analysis, Evolution, and Reengineering. 516–519. https://doi.org/10.1109/
SANER.2015.7081868

[6] F. Camilo, A. Meneely, and M. Nagappan. 2015. Do Bugs Foreshadow Vulner-
abilities? A Study of the Chromium Project. InWorking Conf. Mining Software
Repositories. 269–279. https://doi.org/10.1109/MSR.2015.32

[7] J. Cox, E. Bouwers, M. van Eekelen, and J. Visser. 2015. Measuring Dependency
Freshness in Software Systems. In Int’l Conf. Software Engineering. IEEE Press,
109–118. https://doi.org/10.1109/ICSE.2015.140

[8] A. Decan, T. Mens, and M. Claes. 2016. On the Topology of Package Dependency
Networks — A Comparison of Three Programming Language Ecosystems. In
European Conf. Software Architecture Workshops. ACM . https://doi.org/10.1145/
2993412.3003382

[9] A. Decan, T. Mens, and M. Claes. 2017. An empirical comparison of dependency
issues in OSS packaging ecosystems. In Int’l Conf. Software Analysis, Evolution,
and Reengineering. 2–12. https://doi.org/10.1109/SANER.2017.7884604

[10] Alexandre Decan, Tom Mens, and Philippe Grosjean. 2018. An empirical compar-
ison of dependency network evolution in seven software packaging ecosystems.
Empirical Software Engineering (10 Feb 2018). https://doi.org/10.1007/s10664-
017-9589-y

[11] E. Derr, S. Bugiel, S. Fahl, Y. Acar, and M. Backes. 2017. Keep me Updated:
An Empirical Study of Third-Party Library Updatability on Android. In ACM
Conf. on Computer and Communications Security. https://doi.org/10.1145/
3133956.3134059

[12] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman, M. Payer, N. Weaver, D.
Adrian, V. Paxson, M. Bailey, and J. A. Halderman. 2014. The Matter of Heartbleed.

In Proceedings of the 2014 Conference on Internet Measurement Conference (IMC ’14).
ACM, New York, NY, USA, 475–488. https://doi.org/10.1145/2663716.2663755

[13] J.I. Hejderup. 2015. In Dependencies We Trust: How vulnerable are dependencies in
software modules? Master’s thesis. Delft University of Technology.

[14] E. L. Kaplan and P. Meier. 2012. Nonparametric Estimation from Incomplete
Observations. J. American Statistical Association 53, 282 (2012), 457–481. https:
//doi.org/10.23072281868

[15] R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue. 2017. Do developers
update their library dependencies? Empirical Software Engineering (11 May 2017).
https://doi.org/10.1007/s10664-017-9521-5

[16] T. Lauinger, A. Chaabane, W. Robertson, C. Wilson, and E. Kirda. 2017. Thou
Shalt Not Depend on Me: Analysing the Use of Outdated JavaScript Libraries on
the Web. In ISOC Network and Distributed System Security Symposium. https:
//doi.org/10.14722/ndss.2017.23414

[17] F. Massacci, S. Neuhaus, and V. H. Nguyen. 2011. After-life Vulnerabilities:
A Study on Firefox Evolution, Its Vulnerabilities, and Fixes. In Proceedings of
the Third International Conference on Engineering Secure Software and Systems
(ESSoS’11). Springer-Verlag, Berlin, Heidelberg, 195–208. http://dl.acm.org/
citation.cfm?id=1946341.1946361

[18] F. Massacci and V. H. Nguyen. 2010. Which is the Right Source for Vulnerability
Studies?: An Empirical Analysis on Mozilla Firefox. In Proceedings of the 6th
International Workshop on Security Measurements and Metrics (MetriSec ’10). ACM.
https://doi.org/10.1145/1853919.1853925

[19] A. Nesbitt and B. Nickolls. 2017. Libraries.io Open Source Repository and Depen-
dency Metadata. (June 2017). https://doi.org/10.5281/zenodo.808273

[20] M. Di Penta, L. Cerulo, and L. Aversano. 2009. The life and death of statically
detected vulnerabilities: An empirical study. Information and Software Technology
51, 10 (2009), 1469 – 1484. https://doi.org/10.1016/j.infsof .2009.04.013

[21] N. H. Pham, T. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. 2010. Detection of
Recurring Software Vulnerabilities. In Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering (ASE ’10). ACM, New York, NY,
USA, 447–456. https://doi.org/10.1145/1858996.1859089

[22] snyk. 2017. The State of Open Source Security. https://snyk.io/stateofossecurity/.
(November 2017).

[23] H. H. Thompson. 2003. Why security testing is hard. IEEE Security Privacy 1, 4
(July 2003), 83–86. https://doi.org/10.1109/MSECP.2003.1219078

[24] J. Williams and A. Dabirsiaghi. 2014. The Unfortunate Reality of Insecure Libraries.
White Paper. Contrast Security.

[25] E. Wittern, P. Suter, and S. Rajagopalan. 2016. A Look at the Dynamics of the
JavaScript Package Ecosystem. In Int’l Conf. Mining Software Repositories. ACM,
351–361. https://doi.org/10.1145/2901739.2901743

https://doi.org/10.1007/978-0-387-68560-1
https://doi.org/10.1145/3106237.3106267
https://doi.org/10.1145/3106237.3106267
https://doi.org/10.1145/2950290.2950325
https://doi.org/10.1109/SANER.2015.7081868
https://doi.org/10.1109/SANER.2015.7081868
https://doi.org/10.1109/MSR.2015.32
https://doi.org/10.1109/ICSE.2015.140
https://doi.org/10.1145/2993412.3003382
https://doi.org/10.1145/2993412.3003382
https://doi.org/10.1109/SANER.2017.7884604
https://doi.org/10.1007/s10664-017-9589-y
https://doi.org/10.1007/s10664-017-9589-y
https://doi.org/10.1145/3133956.3134059
https://doi.org/10.1145/3133956.3134059
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.23072281868
https://doi.org/10.23072281868
https://doi.org/10.1007/s10664-017-9521-5
https://doi.org/10.14722/ndss.2017.23414
https://doi.org/10.14722/ndss.2017.23414
http://dl.acm.org/citation.cfm?id=1946341.1946361
http://dl.acm.org/citation.cfm?id=1946341.1946361
https://doi.org/10.1145/1853919.1853925
https://doi.org/10.5281/zenodo.808273
https://doi.org/10.1016/j.infsof.2009.04.013
https://doi.org/10.1145/1858996.1859089
https://doi.org/10.1109/MSECP.2003.1219078
https://doi.org/10.1145/2901739.2901743

	Abstract
	1 Introduction
	2 Methodology
	2.1 Selected package manager
	2.2 Identifying affected releases
	2.3 Vulnerability Dataset

	3 RQ0: How many packages are known to be affected by vulnerabilities?
	4 RQ1: How long do packages remain vulnerable?
	5 RQ2: When are vulnerabilities discovered?
	6 RQ3: When are vulnerabilities fixed?
	7 RQ4: When are vulnerabilities fixed in dependent packages?
	8 Discussion
	9 Threats to Validity
	10 Related Work
	11 Future Work
	12 Conclusion
	Acknowledgments
	References

