Subsystem coupling using co-simulation methods:

Coupling of vehicle/track-soil subsystems using an X-T approach

Bryan OLIVIER, Olivier VERLINDEN, Georges KOUROUSSIS

Abstract

The vibrations generated by the passing of a train sometimes reach important levels such that they can generate discomfort in surrounding buildings. In order to understand this phenomenon, a numerical modeling can be implemented. However, this modeling involves two mechanical parts that differ by their behavior and their mathematical representation: the vehicle and the soil. Both subsystems are linked by the track. To re-couple those subsystems during the time integration, an X-T co-simulation technique will be used such that each subsystem can be integrated using appropriate solvers that are implemented in two different software packages. Finally, the co-simulated model will be compared to an already validated two-step model.

Introduction

Originally, Kourovissis et al. [1] proved that a decoupled integration is sufficient to obtain a sufficiently accurate representation of the level of vibration in the surroundings of a track on which a train is passing. The two-step method (see Figure 1) was:

- **vehicle/track integration** with a coupled lumped mass (CLM) representation of the soil
- **soil integration** using the forces computed in the first step

However, the decoupling shows its limitations if the soil becomes too soft. Therefore, co-simulation will be used between the previously decoupled problem by re-coupling them during the integration process.

1 Subsystem choice and coupling method

The entire model described in Figure 2 is composed of two interacting subsystems:

- **Subsystem 1**: [EasyDyn] vehicle (wheel set) and the track (rail/railpads/sleepers)
- **Subsystem 2**: [ABAQUS] 3D soil (meshed soil kernel/semi-infinite shell)

The coupling X-T method that consists of an exchange of a displacement/speed and force is illustrated in Figure 3. This coupling is performed through the ballast which is modeled as a flexible element (spring-damper system).

2 Investigated co-simulation methods

The co-simulation approaches investigated (see Figure 4) differ by the way both subsystems are integrated and also how the data are exchanged between them:

- **Gauss-Seidel (GS)**: purely sequential integration
- **Jacobi (J)**: parallel integration

![Figure 4: Gauss-Seidel scheme (red) - Jacobi scheme (green)](image)

3 Results

The results obtained using the co-simulated model are compared with the two-step decoupled model in Figures 5 and 6. E represents the soil elasticity while the exponent of GS and J denotes $log_{10}(H)$ with H the macrotimestep (data exchange timestep).

![Figure 5: Time history of the vertical velocity of the middle sleeper print on soil](image)

![Figure 6: Comparison of Gauss-Seidel (left) and two-step (right) models in terms of soil displacement magnitude](image)

4 Conclusions

- **Convergence** to the same solution is obtained due to the zero-stable characteristics of the numerical schemes [2].
- **Gauss-Seidel** provides more accurate and more stable results than **Jacobi** for a same macrotimestep.
- The stiffer the soil, the closer the results are between the co-simulated and the two-step models.

References