PROCEEDINGS

of the

Society of Magnetic Resonance
THIRD SCIENTIFIC MEETING AND EXHIBITION

and the

European Society For Magnetic Resonance In Medicine And Biology
TWELFTH ANNUAL MEETING AND EXHIBITION

held jointly

NICE ACROPOLIS
Nice, France
August 19 - 25, 1995

Volume 1
ISSN 1065-9889
INTRODUCTION.

Water proton relaxation rates of paramagnetic solutions are governed by inner sphere and outer sphere interactions and are usually analyzed by their Nuclear Magnetic Resonance Dispersion (NMRD) profiles. This step requires some a priori knowledge and some adjustment of the parameters governing the magnetic interactions. It can therefore be helpful to obtain quantitative information by alternative techniques. In this respect, 17O NMR can be used to estimate the number of coordinated water molecules (q) and the exchange rate of water between the first coordination sphere and bulk water (τ_w). The nuclear relaxation rate of a deuterium covalently bound to a carbon depends only on the quadrupolar coupling constant and on the molecular tumbling. Hence, the rotational correlation time of the molecule (τ_R) can be easily calculated from R_1 measurements. The aim of this work was thus to use 2H NMR relaxation rates of specifically labeled ligands and of their diamagnetic lanthanide (III) complexes to evaluate the τ_R in aqueous solutions. Several known contrast agents (Gd-DTPA, Gd-DOTA, Gd-DTPBMA, Gd-EOB-DTPA) as well as a new complex 1-benzylidenetriaminediaceatocarboxylate gadolinium (III) (Gd-BzDTPA) were studied. Interactions with seric proteins were also investigated through 2H transverse and longitudinal relaxation rates.

METHODS

Bz-DTPA was synthesized according to Brechbühl et al.'s procedure. The organic ligands DTPA, DOTA, DTPA-BMA, EOB-DTPA and Bz-DTPA were deuterated on carboxylic acid (or amide) α-carbons using 2H in basic solutions (K$_2$CO$_3$). 3H and 17O NMR spectra were obtained on a Bruker MSL 200 spectrometer (4.7 T) using a broadband probe respectively tuned at 30.7 and 27.1 MHz. No field frequency lock was used except for measurement of 17O chemical shifts (ΔD$_2^O=15\%$). Deuterium depleted water was used for 2H NMR measurements. Seric solutions (Kontrologen L, Behring) were prepared with deuterium depleted water. T_1 of 2H was measured using the IRFT sequence and a 3 parameters exponential fitting procedure. τ_w was estimated from 17O transverse relaxation rates of water in the different gadolinium complex solutions using linewidth measurements. Diamagnetic relaxation rate of 17O water was obtained from a Carr-Purcell-Meiboom-Gill sequence. Samples (2 ml) were contained in 10 mm outer diameter pyrex tubes. Temperature was controlled by a BVT 1000 unit using air or nitrogen gas flow. Concentration of ligands or complexes was 50 mM except for Dy complexes for which concentrations varied from 10 to 80 mM.

RESULTS AND DISCUSSION

17O NMR: The number of coordinated water molecules in lanthanide EOB-DTPA and Bz-DTPA was estimated to 1.9 and 2.1 respectively from water 17O chemical shift measurements performed on Dy complexes. τ_w at 310 K obtained from R_2 measurements of 17O of Gd-EOB-DTPA solution was 9×10^{-4} s and thus in good agreement with the reported value for Gd-DTPA (1.05 $\times 10^{-7}$ s), whereas τ_w of Gd-BzDTPA was longer (3.1 $\times 10^{-7}$ s).

3H NMR: τ_R values derived from 2H longitudinal relaxation rates (Table 1) were calculated using a quadrupolar coupling constant of 170,000 kHz. The τ_R of ligands and La$^{3+}$ complexes are very close and in good agreement with those obtained from the analysis of 1H NMRD profiles (Table 1).

<table>
<thead>
<tr>
<th></th>
<th>Ligands</th>
<th>La complex</th>
<th>Gd complex</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTPA</td>
<td>55±7</td>
<td>58±7</td>
<td>56 (b)</td>
</tr>
<tr>
<td>DTPBMA</td>
<td>58±8</td>
<td>66±8</td>
<td>67 (b)</td>
</tr>
<tr>
<td>DOTA</td>
<td>62±8</td>
<td>71±8</td>
<td>53 (b)</td>
</tr>
<tr>
<td>EOB-DTPA</td>
<td>65±8</td>
<td>66±8</td>
<td>61 (c)</td>
</tr>
<tr>
<td>Bz-DTPA</td>
<td>63±8</td>
<td>64±8</td>
<td>57 (c)</td>
</tr>
</tbody>
</table>

Table 1: τ_R (ps) of 2H labelled ligands and La$^{3+}$ complexes in aqueous solution (pH=7, T=37°C). (a) values obtained from 1H NMRD profiles. (b) q=1 (c) q=2

In seric solution, 2H R$_1$ increased slightly for all labelled ligands. This relaxation enhancement may result from a viscosity or microviscosity effect and/or from interaction between the ligand and the seric proteins. Stokes Einstein law predicts that τ_R is roughly proportional to molecular volume. The τ_R of a ligand bound to a macromolecule like albumin can thus be estimated at $\approx 1.10^4$ s, so that ωR$_1$ is >1. Since the extreme narrowing condition is no longer valid, R$_1$ is not ideally sensitive to protein binding. On the contrary, the P$_V$ variation would be more appropriate. In seric solution, linewidth increases of DTPA, DOTA and DTPBMA are <8 Hz, whereas the resonances of the more lipophilic EOB-DTPA and Bz-DTPA are markedly broadened (>25 Hz) due to their interaction with macromolecules.

In summary, in aqueous saline solutions, τ_R of labelled ligands or diamagnetic complexes can easily be obtained by longitudinal relaxation rates of 2H. On the other hand, analysis of 2H linewidths is more appropriate to get information on possible interaction between ligands and macromolecules. This technique showed that DTPA, DOTA and DTPBMA do not interact with protein, whereas EOB-DTPA and Bz-DTPA clearly associate with seric macromolecules.

REFERENCES