Energy harvesting in nuclear environments

A solution to power WSNs used for monitoring?

Ir. Alexandre QUENON, Assistant
Alexandre.QUENON@umons.ac.be
Nuclear applications

A vision from comic books

Useful...
- Electricity production
- Medical examinations
- Food sterilization

...but hazardous
- For human beings
- For environments

→ monitoring

Source: Midam, Adam, Augustin, GAME OVER.
Outline

- Introduction: WSNs for monitoring nuclear environments
- Powering WSN’s nodes
- Design challenges and how to overcome them
- Discussion & conclusion
- References
Monitoring nuclear environments

What?

Location
- In-situ
- Neighborhood

Solutions
- Humans
- Remote

How?
The sensor node

Focus of this work

Wireless Sensor Node

PMU → MEAS → TX

V_{EHR} C_{ext}

$T \degree C, H \%$, rad [Gy, Bq]...

Environment
Outline

- Introduction: WSNs for monitoring nuclear environments
- Powering WSN’s nodes
- Design challenges and how to overcome them
- Discussion & conclusion
- References
How to power the WSN’s nodes?

Available power sources

- Maintenance
- Harsh condition

- ENV
- Power density

Wires
- Maintenance

[Im07] [Im08] [Im09]
Energy harvesting (1)

Overview

DC
- $P_{out} = 1–100 \text{ mW/cm}^2$

AC
- $P_{out} = 0.01–10 \text{ mW/cm}^2$

DC
- $P_{out} = 0.01–100 \text{ mW/cm}^2$

AC
- $P_{out} = 1 \text{ n–100 } \mu\text{W/cm}^2$

Main references: [1]-[6]
Energy harvesting (2)

Application to nuclear environments

<table>
<thead>
<tr>
<th>Nuclear pool</th>
<th>Reactor’s neighborhood</th>
<th>Medicine</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Light	✓	✓	?	✓
Heat	✓	?	?	?
Vibrations	X	✓	✓	X
RF	?	✓	?	X

→ No all-purpose solution...
From harvesting to use

Energy source

Power available
- Not electric (usually)
- Time-variant
- Low amount

Circuit (application)

Power demand
- Electrical power
- Continuous power supply
- Power cycles (sleep, idle, run)

How to accommodate application to source?

Strategy (protocol) ≡ power management

Power cycle: charge and discharge of an external capacitor [7]

Sensing + coding + TX

External capacitor voltage

Vmaximum

Vsupply

High threshold = 0.6 V

Low threshold = 0.5 V

Turn on

End of transmission

Time
Power management

Power Management Unit: functional block diagram

Legend

- Block
- Action
- Measure & Control

Harvester → Voltage multiplier → Storage → Voltage regulator

Controller

- Power-on
- Reset
- Power-down
- Protections (U, I, T)
Outline

- Introduction: WSNs for monitoring nuclear environments
- Powering WSN’s nodes
- Design challenges and how to overcome them
- Discussion & conclusion
- References
Design challenge #1

Withstand ionizing radiation

- Undesired effects
 - Example: ionization due to γ-rays

- Consequences on the circuit

Main references: [8]-[11]
Design challenge #2

Energy harvesting as unique source

- Ultra-Low Power (ULP), Ultra-Low Voltage (ULV) design
 - Example: power-down transistor

- Main issue: ionizing radiation \rightarrow permanent leakage
Outline

- Introduction: WSNs for monitoring nuclear environments
- Powering WSN’s nodes
- Design challenges and how to overcome them
- Discussion & conclusion
- References
Existing WSN-based solutions

For nuclear environment monitoring

- **Academic**
 - WSNs for monitoring nuclear fuel dry-cask storage
 - Thermoelectric generator (heat)
 - Claim: 50 years of operation

- **Commercial**
 - “Wasp mote”, from Libelium
 - Solar panel (light)
 - 6600 mA h battery

Main references: [12]-[13]
Research to do?

Autonomous sensors in nuclear environment
→ Still a lot to do

- **Circuit-level**
 - Use radiation hardening techniques
 combined with ultra-low power/voltage techniques

- **System-level**
 - Strategy for power management
 - Data transmission protocols
Conclusion

Monitoring nuclear environments

- **Solution: Wireless Sensor Networks**
 - Solutions exist (academic, commercial)
 - Work in progress to make autonomous sensors

- **Use energy harvesting to power WSN’s nodes?**
 - Yes but strategy required (specific power management)
 - Design: withstand ionizing radiation & minimize power consumption
Thank you

HARVESTING

IS AWESOME

It’s questions time!
References
Literature (1)

Literature (2)

Images

[Im01] Clker-Free-Vector-Images, nuclear-34997. 2012. URL: https://pixabay.com/fr/nucl%C3%A9aire-radioactivit%C3%A9-toxique-34997/
[Im02] OpenClipart-Vectors, hot-159386. 2013. URL: https://pixabay.com/fr/vectors/chaud-temp%C3%A9rature-thermom%C3%A8tre-%C3%A9lectricite-159386/
[Im04] mpaiv, old-3155763. 2017. URL: https://pixabay.com/fr/photos/vieux-antique-la-technologie-3155763/
[Im06] OpenClipart-Vectors, wlan-155909. 2013. URL: https://pixabay.com/fr/vectors/wlan-lan-sans-fil-carte-exp%C3%A9diteur-155909/
[Im08] ilnanny, 17128-illustration-of-a-battery-ve. URL: http://www.freestockphotos.biz/stockphoto/17128
[Im09] Michael Schwarzenberger, electrician-499799. 2014. URL: https://pixabay.com/fr/photos/%C3%A9lectricien-lego-r%C3%A9paration-499799/
[Im13] com329329, x-ray-1704855._2016. 2014. URL: https://pixabay.com/fr/photos/radiographie-sant%C3%A9-bras-%C3%A9lectricien-1704855/