Extending finite-memory determinacy by Boolean combination of winning conditions

Stéphane Le Roux1 Arno Pauly2 Mickael Randour3

1LSV – CNRS & ENS Paris-Saclay 2Swansea University
3F.R.S.-FNRS & UMONS – Université de Mons

September 12, 2019

\textit{RP 2019 – 13th International Conference on Reachability Problems}
The talk in one slide

Strategy synthesis for two-player turn-based games
Finding good controllers for systems interacting with an antagonistic environment.

Good? Performance evaluated through objectives / payoffs.

Question
When are simple strategies sufficient to play optimally?

We establish a general framework that preserves finite-memory determinacy when combining objectives.

Joint work with S. Le Roux and A. Pauly, in FSTTCS’18 [RPR18] (on arXiv).
1. Memoryless determinacy

2. Finite-memory determinacy and Boolean combinations

3. Conclusion and ongoing work
1 Memoryless determinacy

2 Finite-memory determinacy and Boolean combinations

3 Conclusion and ongoing work
Games on graphs: example

We consider *finite* arenas with vertex *colors* in C. Two players: circle (1) and square (2). Strategies $C^* \times V_i \rightarrow V$ (w.l.o.g.).

- A *winning condition* is a set $W \subseteq C^\omega$.

From where can Player 1 ensure to reach v_6? How complex is his strategy?

Memoryless strategies ($V_i \rightarrow V$) always suffice for reachability (for both players).
When are memoryless strategies sufficient to play optimally?

Virtually always for simple winning conditions!

Examples: reachability, safety, Büchi, parity, mean-payoff, energy, total-payoff, average-energy, etc.

Can we characterize when they are?

Yes, thanks to Gimbert and Zielonka [GZ05] (see also, e.g., [Kop06, AR17]).
Gimbert and Zielonka’s criterion

Memoryless strategies suffice for a preference relation (and the induced winning conditions) iff

1. it is monotone,
 ▶ Intuitively, stable under prefix addition.

2. it is selective.
 ▶ Intuitively (the true characterization is slightly more subtle), stable under cycle mixing.

Example: reachability.

No equivalent for finite memory!

I will come back to that... 😊
1. Memoryless determinacy

2. Finite-memory determinacy and Boolean combinations

3. Conclusion and ongoing work
Combining winning conditions (1/2)

Needed for multi-objective reasoning.

Memoryless strategies do not suffice anymore, even for simple conjunctions!

\[
(1, -1) \quad (-1, -1) \quad (-1, 1)
\]

Examples:

- Büchi for \(v_1 \) and \(v_3 \) → finite (1 bit) memory.
- Mean-payoff (average weight per transition) \(\geq 0 \) on all dimensions → infinite memory!
Combining winning conditions (2/2)

Our goal

We want a *general* and *abstract* theorem guaranteeing the sufficiency of finite-memory strategies\(^a\) in games with Boolean combinations of objectives provided that the underlying simple objectives fulfill some criteria.

\(^a\)Implementable via a finite-state machine.
Combining winning conditions (2/2)

Our goal

We want a *general* and *abstract* theorem guaranteeing the sufficiency of finite-memory strategies\(^a\) in games with Boolean combinations of objectives provided that the underlying simple objectives fulfill some criteria.

\(^a\)Implementable via a finite-state machine.

Advantages:

- study of core features ensuring finite-memory determinacy,
- works for almost all existing settings and many more to come.

Drawbacks:

- concrete memory bounds are huge (as they depend on the most general upper bound).
- sufficient criterion, not full characterization.
The building blocks

The full approach is technically involved but can be sketched intuitively.

Criterion outline

Any *well-behaved* winning condition combined with conditions traceable by finite-state machines (i.e., *safety-like* conditions) preserves finite-memory determinacy.

To state this theorem formally, we need three ingredients:

1. *regularly-predictable* winning conditions,
2. *regular* languages,
3. *hypothetical* subgame-perfect equilibria (hSPE).

We match the FM-determinacy frontier almost exactly!

⇒ Only one exception AFAWK (hSPE vs. opt. strategies).
1. Memoryless determinacy

2. Finite-memory determinacy and Boolean combinations

3. Conclusion and ongoing work
Conclusion

- Combining similar simple objectives leads to contrasting behaviors: difficult to extract the core features leading to FM determinacy.
- Our main result is a **sufficient criterion**, not a full characterization.
 - In practice, it does cover everything except *average-energy with a lower-bounded energy condition* — a very strange corner case.
 - **Any weakening of our hypotheses almost immediately leads to falsification.**
 - We also have several **more precise results** (e.g., much lower bounds) for specific combinations and/or restrictive hypotheses.
Ongoing work

We now have an almost complete picture of the frontiers of FM determinacy for *combinations of objectives*.

What about a complete characterization à la Gimbert and Zielonka?

Ongoing work with P. Bouyer, S. Le Roux, Y. Oualhadj and P. Vandenhove. Promising preliminary results.

Thank you! Any question?
References

Benjamin Aminof and Sasha Rubin.
First-cycle games.

Infinite runs in weighted timed automata with energy constraints.

Patricia Bouyer, Piotr Hofman, Nicolas Markey, Mickael Randour, and Martin Zimmermann.
Bounding average-energy games.

Véronique Bruyère, Quentin Hautem, and Mickael Randour.
Window parity games: an alternative approach toward parity games with time bounds.

Véronique Bruyère, Quentin Hautem, and Jean-François Raskin.
On the complexity of heterogeneous multidimensional games.
References II

Average-energy games.

Krishnendu Chatterjee and Laurent Doyen.
Energy parity games.

Krishnendu Chatterjee, Laurent Doyen, Mickael Randour, and Jean-François Raskin.
Looking at mean-payoff and total-payoff through windows.

Krishnendu Chatterjee, Thomas A. Henzinger, and Marcin Jurdzinski.
Mean-payoff parity games.

Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman.
Generalized parity games.

Krishnendu Chatterjee, Mickael Randour, and Jean-François Raskin.
Strategy synthesis for multi-dimensional quantitative objectives.
References III

Hugo Gimbert and Wieslaw Zielonka.
Games where you can play optimally without any memory.

Marcin Jurdzinski, Ranko Lazic, and Sylvain Schmitz.
Fixed-dimensional energy games are in pseudo-polynomial time.

Eryk Kopczynski.
Half-positional determinacy of infinite games.

Stéphane Le Roux, Arno Pauly, and Mickael Randour.
Extending finite-memory determinacy by Boolean combination of winning conditions.
Yaron Velner, Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, Alexander Moshe Rabinovich, and Jean-François Raskin.
The complexity of multi-mean-payoff and multi-energy games.

Yaron Velner.
Robust multidimensional mean-payoff games are undecidable.