Production of high-content fructo-oligosaccharides by different fermentation approaches

Cristiana Castro1,2,*, Clarisse Nobre1,3, Anne-Lise Hanston2 and Guy De Weireld1

1 Thermodynamics and Mathematical Physics Department, Faculty of Engineering, Boulevard Dolez, University of Mons B-7000 Mons, Belgique
2 Applied Chemistry and Biochemistry Department, Faculty of Engineering, University of Mons Rue de l’Epergne, 56, 7000 Mons, Belgique
3 Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal

E-mail: cristiana.castro@umons.ac.be

Introduction

Fructo-oligosaccharides (FOS), or prebiotic sugars, have an important commercial interest in the food market due to their health beneficial properties [1]. They are known to prevent and treat a large number of intestinal disorders, and improve the quality of food products, in which they are introduced [2].

Industrially, FOS are produced by microbial enzymes from sucrose through transfructosylation using a two-stage process, where enzymes are first obtained by the microorganism and further extracted for the enzymatic synthesis of FOS [3]. Sucrose is converted to FOS by Aureobasidium pullulans in yields between 55-60%. To increase the percentage of FOS in these mixtures, the non-prebiotic sugars (fructose, glucose and sucrose) present have to be removed.

Here we proposed, firstly, the reduction of salts concentration in the fermentative broth, that will be further purified in the simulated moving bed chromatography (SMB) [4], and FOS production using an one-stage process fermentation with the whole cells of A. pullulans [5], secondly, the use of Saccharomyces cerevisiae strain to consume the small sugars before purification with SMB, using two different approaches, one step fermentation (co-culture), and two-steps fermentation (series).

Results and Discussion

A Experimental design for optimization of the fermentation broth in shaken flasks

<table>
<thead>
<tr>
<th>NaN03 (g/L)</th>
<th>KH2PO4 (g/L)</th>
<th>Fermentation time (h)</th>
<th>Maximum FOS (g/L)</th>
<th>% FOS (w/w)</th>
<th>Yieldp (w/w)</th>
<th>Productivity (g/L.h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>5.0</td>
<td>8.0</td>
<td>47.8</td>
<td>101.3</td>
<td>48.9</td>
<td>54.0</td>
</tr>
<tr>
<td>A2</td>
<td>20.0</td>
<td>4.0</td>
<td>53.5</td>
<td>91.5</td>
<td>43.5</td>
<td>46.0</td>
</tr>
<tr>
<td>A3</td>
<td>12.5</td>
<td>6.0</td>
<td>53.5</td>
<td>103.7</td>
<td>48.1</td>
<td>53.0</td>
</tr>
<tr>
<td>A4</td>
<td>5.0</td>
<td>4.0</td>
<td>47.8</td>
<td>95.4</td>
<td>50.8</td>
<td>50.0</td>
</tr>
<tr>
<td>A5</td>
<td>5.0</td>
<td>6.0</td>
<td>53.5</td>
<td>95.1</td>
<td>49.6</td>
<td>48.0</td>
</tr>
<tr>
<td>A6</td>
<td>12.5</td>
<td>8.0</td>
<td>53.5</td>
<td>101.8</td>
<td>49.8</td>
<td>51.0</td>
</tr>
<tr>
<td>A7</td>
<td>12.5</td>
<td>6.0</td>
<td>47.8</td>
<td>104.3</td>
<td>50.6</td>
<td>53.0</td>
</tr>
<tr>
<td>A8</td>
<td>20.0</td>
<td>6.0</td>
<td>47.8</td>
<td>105.7</td>
<td>49.3</td>
<td>53.0</td>
</tr>
<tr>
<td>A9</td>
<td>12.5</td>
<td>4.0</td>
<td>53.5</td>
<td>105.6</td>
<td>49.7</td>
<td>53.0</td>
</tr>
<tr>
<td>A10</td>
<td>20.0</td>
<td>8.0</td>
<td>53.5</td>
<td>103.0</td>
<td>47.0</td>
<td>52.0</td>
</tr>
<tr>
<td>A11</td>
<td>12.5</td>
<td>6.0</td>
<td>53.5</td>
<td>99.9</td>
<td>49.0</td>
<td>50.0</td>
</tr>
</tbody>
</table>

No statistical differences were found in the shaken flasks fermentations results;
- The reduction of the concentrations of the salts in the medium was encouraged;
- The concentrations of NaN03 and KH2PO4 selected were 5.0 and 4.0 g.L-1.

B FOS production by A. pullulans at low salt concentration in bioreactor

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Average IC (95% confidence)</th>
<th>Reference [S]</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>54.0</td>
<td>43</td>
</tr>
<tr>
<td>43</td>
<td>6.0</td>
<td>6.1</td>
</tr>
</tbody>
</table>

- The reduction of salts in the bioreactor fermentations did not influence the yield and the percentage of FOS;
- The optimal fermentation time decreased and thus the productivity increased.

C FOS production by A. pullulans in co-culture with S. cerevisiae in bio-reactor

The presence of S. cerevisiae and A. pullulans in the same fermenter decreases the concentration of FOS produced;
- S. cerevisiae decreases continuously the small saccharides in the medium.

D FOS production by A. pullulans in serie with S. cerevisiae in bio-reactor

- S. cerevisiae was able to remove small saccharides in the medium;
- An increased percentage of FOS was achieved in this process, up to 81% (w/w).

References


Conclusions

- The minimization of the salts quantity in the fermentation broth does not influence the amount of FOS produced and increases the productivity of the process;
- Higher productivity and lower concentration of salts needed reduce the process cost;
- The co-culture fermentation process is less efficient than the fermentation in series;
- Fermentation in series is an advantageous and efficient approach for FOS production and purification.

Acknowledgments:

The work presented had the financial support ofFNRS 2012 (PDR14599891)

Journée des Jeunes Chercheurs - GEPROC-U66PE 2014

23 October 2014