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Abstract—Dealing with speech corrupted by noise and
reverberation is still an issue for automatic speech recog-
nition. To address this, a solution that can be combined
with multi-style learning consists of using multi-task learning,
where the acoustic model is trained to solve one main task
and at least one auxiliary task simultaneously. In noisy
and reverberant environment using clean-speech features
estimation as auxiliary task has proven its efficiency, while the
main task is speech recognition. Still, recognizing speech in
these degraded conditions is all the more difficult when the
amount of available data during training is limited. Thus,
in this paper, we evaluate robust speech recognition based
on multi-task learning when the amount of training data is
gradually reduced. We show that using multi-task learning
improves recognition and more specifically, that its impact
is even more significant if the amount of training data is
decreasing (up to 12% relative improvement of the word
error rate). All training and testing experiments are carried
out on parts of the CHiME4 database.

I. INTRODUCTION

The progress brought by Deep Neural Networks (DNN)
in recent years has made them a very powerful tool for a
wide variety of classification and regression tasks [1]. For
Automatic Speech Recognition (ASR) acoustic modeling,
DNNs have gradually outperformed the previous state-
of-the-art methods based on Gaussian Mixture Models
(GMM) [2]. In fact, the improvement brought by DNNs
is now reaching levels were studies are starting to argue
that near human-level performance can be obtained [3].
Considering ASR as a solved a problem would be an error
thought, and this is especially true concerning ASR in
noisy and reverberant environment [4]. In order to tackle
this problem, different methods have been investigated,
including enhancing the input features at the front-end of
the ASR system for instance.

Our study though, does not focus on pre-processing
features and is instead interested in using Multi-Task
Learning (MTL) to improve ASR performance in this
corrupted acoustic environment. As opposed to the tra-
ditional Single-Task Learning (STL) architecture where a
system is trained to solve only one task, MTL consists

of training one single system to solve multiple tasks that
are related but still different [5]. Using MTL in order to
improve speech recognition has already been tested for a
variety of situations where ASR is the main task while
different auxiliary tasks are added [6], [7]. Despite showing
improvement for ASR in clean acoustic conditions, few
MTL auxiliary tasks have been found to be helpful when
speech is corrupted by noise and reverberation. Generating
the clean-speech feature as an auxiliary task can be cited
among the most efficient approaches though [8], [9], [10],
[11]. Another problem related to ASR is the amount of
annotated data, as annotated speech is critical for ASR
training and might be an issue for languages with fewer
available resources. Thus, in this work, we focus on how
MTL can improve ASR compared to STL when the amount
of available training data is limited. As MTL could be
seen as a regularization method, our hypothesis was that
there exists a correlation between the volume of training
data and the benefit brought by MTL training. In order to
evaluate this correlation we use the simulated speech of the
CHiME4 dataset [4]. Indeed, the CHiME4 dataset contains
both real and simulated data. However, only simulated data
can be used during training here, since we need the clean-
speech features to train the MTL auxiliary task.

This paper is organized as follows. First, an overview
of the state-of-the-art in MTL for ASR is presented in
Section II. The MTL mechanism is then described in depth
in Section III. The details concerning the experimental
setup used to evaluate the impact of MTL with limited
noisy and reverberant speech are presented in Section IV,
while the results are presented and discussed in Section V.
Finally, the conclusion and ideas for future work are
examined in Section VI.

II. RELATED WORK

Multi-task learning has been successfully applied for
ASR with a variety of auxiliary tasks [6], as for instance
using gender classification [8], [12]. Still, most of these
tasks are efficient when speech recognition is done in



clean conditions, that are not deteriorated by noise, nor
reverberation. Using MTL for robust ASR is also a field
of interest though, and some auxiliary tasks have shown
promising results.

For instance, some studies have focused on solving only
the problem of reverberation in speech by training on
reverberant speech features as input and generating de-
reverberated speech features as auxiliary task [13], [14].
Rather than focusing only on reverberation, other studies
focus only on noise in their MTL auxiliary task, where the
auxiliary task tries to recognize the type of noise present
in the corrupted speech [15], [16]. This classification aux-
iliary task brings a very limited improvement to the main
ASR task. However, a far more promising and successfully
approach consists of generating the clean-speech features
as auxiliary task [8], [9], [10], [11], that is the same
clean-speech features to which noise and reverberation
is artificially added for training purpose. Implicitly, this
means that an access to this clean-speech is required in
order to generate the targets of the auxiliary task, making
it very difficult to use real data. Instead, such an MTL
system is trained using simulated noisy and reverberant
data. Finally, it can be noted that an MTL system can be
used as a feature extractor as well, where a Bottle-Neck
(BN) layer is added to the neural network [17]. In that case,
the MTL system performs two distinct tasks: speaker and
noise classification, while the BN features extracted though
the MTL system are used as input of a traditional STL-
ASR system.

Using MTL for ASR may be seen as a regularization
method, as for MTL a term is added to the cost function
(see Section III) similarly to L1/L2 regularization for
instance. Thus, an expected outcome is that the impact
of MTL is directly dependent of the training data volume.
This remark is confirmed by Caruana results where the
main task is mortality risk and the auxiliary tasks are pre-
dicting the white blood cell count and the partial pressure
of oxygen in the blood [5]. However, these results are not
confirmed when MTL is used for ASR. Indeed, in Bell et
al. study, an MTL-ASR system is trained on the TED talks
database [18] while the auxiliary task focused on predicting
monophones [19]. The amount of data is progressively
reduced from 100% (≈ 145 hours) to 10%. They show
that the improvement brought by MTL compared to STL
is not influenced by the amount of data, suggesting that
using MTL for ASR does not only bring a regularization
effect on the acoustic model training.

Bell et al. work focused on MTL-ASR in clean condi-
tions with large vocabulary continuous speech recognition
databases, where the auxiliary task is monophone classi-
fication. In this paper we present a similar study but we
investigate MTL-ASR in noisy and reverberant conditions

with a smaller database (≈ 15 hours for CHiME4), while
the auxiliary task is clean-speech generation.

To the best of our knowledge, there have been no
attempts to investigate the impact of MTL for ASR when
the amount of available annotated training data is limited
and corrupted by noise and reverberation.

III. MULTI-TASK LEARNING

The core concept of multi-task learning, introduced by
Rich Caruana in 1997, consists of training a single system
(a neural network here) to solve simultaneously multiple
tasks that are different but still related [5]. In the MTL
nomenclature, the principal task is referred to as the main
task, which is the task that would be initially used for an
STL training. An example of a MTL model with one main
task and N auxiliary tasks is presented in Figure 1. At least
one auxiliary task is added during training to help improve
the convergence of the neural network to the benefit of the
main task.

Input features

Deep learning based

Acoustic model

Main Task n
th Task N

th Task.   .   . .   .   .

Fig. 1: A Multi-Task Learning network with one main task
and N auxiliary tasks.

Two essential characteristics are shared among all MTL
systems: a) The same input features are applied for training
both the main task and the auxiliary task(s); b) The net-
work parameters (namely weights and biases of neurons),
are shared among the main and auxiliary tasks (with
the exception of the output layer). These parameters are
furthermore updated by backpropagating the sum of the
errors associated to each task, with a term:

εMTL = εMain +

N∑
n=1

λn ∗ εAuxiliaryn
,

where εMTL corresponds to the sum of all the task errors
to be minimized, εMain and εAuxiliaryn

are the errors
associated with the main and auxiliary tasks respectively,
whereas λn is a nonnegative weight that is associated with
each of the auxiliary tasks, and finally N is the total
number of auxiliary tasks applied during training. The
influence of the auxiliary task with respect to the main
task is controlled by the value of λn. On the one hand, if
λn is close to 1, then the nth auxiliary task will contribute
equally to the error estimation as the main task. On the
other hand, for a λn closer to 0, the system will behave



as a single-task learning system due to the very small (or
nonexistent) influence of the auxiliary task. Only the main
task is kept during testing, as the auxiliary task is removed.
The selection of a relevant auxiliary task with respect
to the main task is the critical point leading to a better
convergence of the main task. Sharing the parameters of
the system among multiple tasks, instead of computing and
training each of the tasks independently, may lead to better
results than the independent processing of each task [5].

IV. EXPERIMENTAL SETUP

A. Database

The dataset partially used for the robust ASR training
and testing is the CHiME4 database [4]. This database,
released in 2016, was proposed for a speech recognition
and separation challenge in reverberant and noisy envi-
ronment. This dataset contains 1-channel, 2-channel, and
6-channel microphone array recordings. A total of four
different noisy environments (café, street junction, public
transport, and pedestrian area) were used to record real
acoustic mixtures using a tablet device with 6-channel
microphones. Simulated data is obtained using the WSJ0
database [20]. Noise is added to the WSJ0 clean-speech
recordings, the noise being recorded in the four noisy
environments described above. As access to the clean-
speech is required to extract the targets of the clean-speech
extraction auxiliary task, only the simulated dataset is used
for training. All three datasets (training, development, and
test sets) consist of 16 bit wav files sampled at 16 kHz.
The simulated dataset used for training contains speech
uttered by 83 speakers for a total of 7138 sentences, which
is the equivalent of ≈15 hours. This also corresponds
to the largest dataset (100%) used for training, that is
progressively reduced in order to evaluate the impact of
MTL for robust ASR. The development set contains the
same volume of simulated and real data, that is a total of
8 different speakers (4 per dataset real/simulated dataset)
uttering a total of 3280 utterances (≈5.6 hours). Similarly,
the evaluation set consists of a total of 8 speakers uttering
2640 sentences leading to approximately 4.5 hours.

In this paper, clean-speech estimation is considered as
auxiliary task, therefore we use only the noise recorded
from a single channel (channel no5) during training. The
development and test set noises though are randomly
selected among all available channels, making the main
ASR and the auxiliary tasks harder but also challenging
the generalization ability of the MTL setup.

B. Features

The following traditional ASR pipeline is used to extract
the features used as input for training the MTL system,
as well as targets for the clean-speech estimation task.

Starting from the raw audio wav files, 13-dimensional
Mel-Frequency Cepstral Coefficients (MFCC) features are
extracted and additionally normalized through Cepstral
Mean-Variance Normalization (CMVN). The adjacent ± 3
frames are spliced for each frame. The obtained 91-
dimensional feature vectors are then reduced through a
Linear Discriminative Analysis (LDA) transformation to a
40-dimensional feature space. The final step of the pipeline
consists of projecting the 40-dimensional features through
a feature-space speaker adaptation transformation known
as feature-space Maximum Likelihood Linear Regression
(fMLLR), with no further dimension reduction at this
stage. Finally, additional temporal context is given to the
network during training by splicing the surrounding ± 5
frames concerning the input features fed to the acoustic
model (using the 40-dimensional features that are com-
puted through this pipeline). For the targets of the auxiliary
task, the same pipeline is used to generate the clean-speech
features but there is no ± 5 splicing.

C. Training the acoustic model

Training and testing the proposed MTL setup for robust
ASR was done using the nnet3 version of the Kaldi
toolbox [21].

A traditional feed-forward deep neural network acoustic
model is used to evaluate the performance of this auxiliary
task while progressively reducing the amount of data. The
feed-forward DNN is composed of 4 hidden layers, each
of them having 1024 neurons activated through Rectified
Linear Units (ReLU). The main ASR task used for STL
and MTL as well computes 1972 phone-state posterior
probabilities after a softmax output layer. The DNN train-
ing is done through 14 epochs with an initial learning rate
starting at 0.0015 that is progressively reduced to 0.00015,
using the cross-entropy loss function for the main ASR
task, and quadratic loss function for the clean-speech esti-
mation auxiliary task (as it is a regression problem). The
DNN parameters are updated through stochastic gradient
descent (SGD) by backpropagating the error derivatives.
The mini-batch size used to process the input features is
equal to 512. These hyper-parameters were set through
empirical observations.

The experiments presented in this article were also
considered using other deep learning algorithms such as
Recurrent Neural Networks (RNN) with Long Short-Term
Memory (LSTM) cells and Time-Delay Neural Networks
(TDNN) as acoustic models instead of a feed-forward
DNN. However, the results obtained with the feed-forward
DNN were similar or better than with these more complex
neural network architectures on the CHiME4 simulated
dataset. Also, the feed-forward DNN computational time
was much lower for training compared to the RNN-LSTM.
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Fig. 2: Evolution of the relative WER improvement brought by Multi-Task Learning compared to single-task learning
while the amount of training data is progressively reduced. MTL is done with clean-speech estimation as auxiliary task
and with a fixed value of λ = 0.15. The Overall value is computed over all four datasets.

The phone-state probabilities estimated by the feed-
forward network are fed to a HMM system and associated
with a language model, in order to obtain the most likely
transcriptions during decoding, the language model being
a 3-gram KN language model trained on the WSJ 5K
standard corpus.

In this work, the baseline is obtained by training the
setup and its hyper-parameters presented previously in a
single-task learning manner. The results are then compared
to the MTL results while using the same volume of
simulated data for training. The word error rate (WER) is
computed for both the development and test sets over all
four noisy environments of CHiME4 for real and simulated
data.

V. RESULTS

After varying the value of λ, the best WER is reached
for λ = 0.15. In order to evaluate the impact of MTL
compared to STL for robust ASR with limited amount
of data, we progressively reduce the training set from
100% to 50%, then 25%, 15% and finally only 5%, by
randomly removing utterances from the training set. More
specifically, we are interested in the relative WER improve-
ment brought by MTL compared to STL depending of the
amount of data. The obtained relative WER improvement
is represented in Fig. 2, while the detailed WER results for
the STL baseline and the MTL setup are shown in Table I.

Before discussing the impact of the amount of training
data, we can notice a significant difference between the
development and test datasets results (for simulated and
real data as well, independently of the amount of data
or the STL/MTL training). For instance, when 100% of
the data is used for an STL training, the real data of the
development set reaches 18.09% WER while for the test
set this value goes up to 31.81%. The variability of the
recording conditions partially explains this mismatch. The
Lombard effect1 might be another explanation. Finally, 83
speakers are used during training, while only 8 are used in
the test and development sets. Thus, if the speech of one
of the speakers is harder to recognize, its impact will be
more degrading on the WER.

Fig. 2 highlights the positive impact of MTL as the
training data decreases. The overall relative improvement
increases from 2.7% for 100% of the training set up to 12%
when only 5% of the training data is used. It should be
noted though, that for 5% of kept training data, the WER
results significantly drop, going for STL from 34.14%
when 15% of the data is kept to 72.86% for 5% of kept
data overall. This drop can be explain by the very small
amount of utterances used during training in this situation
(357 utterances). So for this specific amount of training
data, even though MTL improves the overall WER result

1Human natural tendency to rise voice when speaking in a noisy and
reverberant environment.



Amount of Type of Overall Dev Set Test Set

training data system Mean Simu Real Mean Simu Real

100% STL 23.73 18.27 18.45 18.09 29.18 26.55 31.81

(7138 ut.) MTL 23.08 17.83 17.96 17.70 28.32 25.32 31.32

50% STL 26.78 21.00 21.16 20.83 32.56 29.55 35.57

(3596 ut.) MTL 25.69 19.75 19.72 19.77 31.64 28.67 34.60

25% STL 29.45 23.54 23.56 23.52 35.36 32.07 38.64

(1785 ut.) MTL 27.71 21.85 21.90 21.79 33.58 30.16 37.00

15% STL 34.14 27.91 27.56 28.26 40.38 36.61 44.14

(1071 ut.) MTL 31.31 25.35 24.87 25.82 37.27 34.07 40.47

5% STL 72.86 65.57 62.34 68.80 80.14 74.32 85.96

(357 ut.) MTL 64.14 56.33 53.93 58.73 71.95 66.00 77.90

TABLE I: Word error rate (in %) of Single-Task Learning and Multi-Task Learning when the amount of training data is
progressively reduced. MTL is done with clean-speech estimation as auxiliary task and with a fixed value of λ = 0.15.
The Overall value is computed over all four datasets, while ut. stands for “utterances“.

(64.14%), the network is unable to converge and is most
likely stuck in a local minimum during the SGD.

Nevertheless, for more than 5% of kept training data, the
WER still increases but at a much slower speed, going for
an STL system from 23.73% WER for 100% of training
data to 34.14% for only 15% of kept data. A significant
correlation can be seen between the amount of training
data and the benefit of using MTL, as nearly each time that
the volume of training data is divided by two, the relative
improvement brought by MTL is increased by two percent.
Thus, using MTL for robust ASR when the amount of
available data is limited might significantly improve recog-
nition. Additionally, this improvement is also noticeable
on real and simulated data, while training is done only on
simulated data, showing that speech recognition in real-
life conditions is benefiting from this auxiliary MTL task
trained on simulated data only.

It should also be mentioned that our results could
look somehow contradictory with Bell et al. work [19]
discussed in Section II. Their results showed that for
even 10% of training data the improvement brought by
MTL compared to STL was similar to the improvement
brought when 100% of their training data was used. But,
besides using clean-speech for training as well as another
auxiliary task, another significant difference concerns the
amount of data. Using 10% of TED talk database implies
that around 15 hours of training hours were used, which
is the same amount of data corresponding to 100% of
the simulated training dataset of CHiME4 that we use
in this paper. As Bell et al. work shows that for large
amounts of training data, there is still an improvement
brought by MTL, suggesting that MTL behaves as more
than just a regularization method, we show here that when

the amount of training data is low, MTL does behave
as a regularization method and even more significantly
improves the WER compared to STL.

This remark is confirmed by the evolution of the main
ASR task error during training (with 25% of the data)
depicted in Fig 3. The error on the training set using STL
is lower compared to MTL but the system is over-fitting as
the error for STL on the validation set is much higher than
for MTL, highlighting the better generalization of MTL to
unseen data.

VI. CONCLUSION

In this paper, multi-task learning acoustic modeling with
limited amount of training data for robust speech recog-
nition was evaluated. We used clean-speech generation as
auxiliary task, as it has shown its benefits in noisy and
reverberant conditions. We show that the relative word
error rate improvement brought by MTL compared to STL
gradually increases as the amount of available training data
gradually decreases. Additionally, training is done using
only simulated data in this work (as the clean-speech is
required in order to extract the targets of the MTL auxiliary
task), but we demonstrate that both real and simulated data
benefit from this training approach.

Having confirmed that MTL can improve ASR when the
amount of training data is limited, a study we would like
to investigate in the future concerns speaker adaptation. As
usually for speaker adaptation the amount of data belong-
ing to that speaker is very limited, it will be interesting to
use MTL as a robust speaker adaptation tool.

Also, using more than 15 hours of data for training could
be evaluated in this noisy and reverberant context as future
work, thus showing if the improvement brought by MTL
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training, when using 25% of the training set on the training
and validations sets.

would reach a limit in comparison to STL for a certain
amount of data.

Finally, we also would like to further study robust
low-resources ASR. In the low-resources scenario, often
additional clean-speech data exists but is not annotated in
terms of accurate transcriptions. Using this data to create
simulated corrupted speech is easy though. We could then
design a system that switches dynamically from MTL to
STL depending the annotation level of training samples. If
they are annotated the system would behave as the MTL
setup we present in the article. If they are not, the main
ASR task would be dropped, keeping only the clean-speech
estimation task. This setup will allow us to benefit from the
non-annotated recordings while training for robust speech
recognition.
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