Aims

Exercise training (ET) has been shown to be beneficial in managing obesity-related disorders. ET was reported to have positive effects on the brain but molecular mechanisms of its benefit are poorly known. Our project aims to define the role of Irisin in this context. Irisin is an exercise-induced myokine also expressed in the hippocampus, an essential brain area for learning and memory.

Methods

Exercise training (ET) has been shown to be beneficial in managing obesity-related disorders. ET was reported to have positive effects on the brain but molecular mechanisms of its benefit are poorly known. Our project aims to define the role of Irisin in this context. Irisin is an exercise-induced myokine also expressed in the hippocampus, an essential brain area for learning and memory.

Results

Body Weight

Haematocrit

Fasting Glycaemia

Irisin plasmatic level

Adiponectin plasmatic level

Conclusion

Exercise training (ET) reduces weight gain and fasting glycaemia in obese mice. Enrichment, in mice submitted to voluntary ET, improves spatial learning and memory particularly in obese animals. Irisin plasmatic level is enhanced by high-fat diet and endurance ET. Further studies are now necessary to better understand the contribution of Irisin in ET benefits on brain function.

Aknowlegements

We thank the Research Institute for Health Sciences and Technology, UMONS, for its financial support.

UMONS

Prof. Legrand | Lab. of Respiratory Physiology and Rehabilitation, UMONS | antoine.delpierre@umons.ac.be