LOW-RANK MATRIX APPROXIMATION WITH WEIGHTS OR MISSING DATA IS NP-HARD

NICOLAS GILLIS† AND FRANÇOIS GLINEUR†

Abstract. Weighted low-rank approximation (WLRA), a dimensionality reduction technique for data analysis, has been successfully used in several applications, such as in collaborative filtering to design recommender systems or in computer vision to recover structure from motion. In this paper, we prove that computing an optimal WLRA is NP-hard, already when a rank-one approximation is sought. In fact, we show that it is hard to compute approximate solutions to the WLRA problem with some prescribed accuracy. Our proofs are based on reductions from the maximum-edge biclique problem and apply to strictly positive weights as well as to binary weights (the latter corresponding to low-rank matrix approximation with missing data).

Key words. weighted low-rank approximation, missing data, matrix completion with noise, principal component analysis with missing data, computational complexity, maximum-edge biclique problem

AMS subject classifications. 15A23, 15A83, 68Q17, 90C60

DOI. 10.1137/110820361

1. Introduction. Approximating a matrix with one of lower rank is a key problem in data analysis and is widely used for linear dimensionality reduction. Numerous variants exist, emphasizing different constraints and objective functions (e.g., principal component analysis (PCA) [16], independent component analysis [6], nonnegative matrix factorization [18]), and other refinements are often imposed on these models (e.g., sparsity to improve interpretability or increase compression [7]).

In some cases, it may be necessary to attach a weight to each entry of the data matrix, expressing its relative importance [8]. This is the case, for example, in the following situations:

- The matrix to be approximated is obtained via a sampling procedure, and the number of samples and/or the expected variance vary among the entries. For example, it has been shown that using a weighted norm gives better results in two-dimensional digital filter design [19] and microarray data analysis [20].
- Some data are missing/unknown, which can be taken into account by assigning zero weights to the missing/unknown entries of the data matrix. This is the case, for example, in collaborative filtering, notably used to design recommender systems [24] (in particular, the Netflix prize competition has demonstrated the effectiveness of low-rank matrix factorization techniques [17]) or in computer vision to recover structure from motion [26, 15]; see also [4]. This problem is often referred to as PCA with missing data [26, 13] and can be viewed as a low-rank matrix completion problem with noise; i.e., ap-
proximate a given noisy data matrix featuring missing entries with a low-rank matrix.\footnote{In our settings, the rank of the approximation is fixed a priori.}

- A greater emphasis must be placed on the accuracy of the approximation on a localized part of the data, a situation encountered, for example, in image processing [14, Chapter 6].

Finding a low-rank matrix which is closest to the input matrix according to these weights is an optimization problem called \textit{weighted low-rank approximation} (WLRA). Formally, it can be formulated as follows: first, given an \(m\)-by-\(n\) nonnegative weight matrix \(W \in \mathbb{R}^m \times n\), we define the weighted Frobenius norm of an \(m\)-by-\(n\) matrix \(A\) as \(\|A\|_W = (\sum_{i,j} W_{ij} A^2_{ij})^{\frac{1}{2}}\). Then, given an \(m\)-by-\(n\) real matrix \(M \in \mathbb{R}^m \times n\) and a positive integer \(r \leq \min(m,n)\), we seek an \(m\)-by-\(n\) matrix \(X\) with rank at most \(r\) that approximates \(M\) as closely as possible, where the quality of the approximation is measured by the weighted Frobenius norm of the error:

\[
p^* = \inf_{X \in \mathbb{R}^m \times n} \|M - X\|_W^2 \quad \text{such that } X \text{ has rank at most } r.
\]

Since any \(m\)-by-\(n\) matrix with rank at most \(r\) can be expressed as the product of two matrices of dimensions \(m\)-by-\(r\) and \(r\)-by-\(n\), we will use the following more convenient formulation featuring two unknown matrices \(U \in \mathbb{R}^m \times r\) and \(V \in \mathbb{R}^r \times n\) but no explicit rank constraint:

\[
(WLRA) \quad p^* = \inf_{U \in \mathbb{R}^m \times r, V \in \mathbb{R}^r \times n} \|M - UV^T\|_W^2 = \sum_{ij} W_{ij} (M - UV^T)_{ij}^2.
\]

Even though (WLRA) is suspected to be NP-hard [15, 27], this has never, to the best of our knowledge, been studied formally. In this paper, we analyze the computational complexity in the rank-one case (i.e., for \(r = 1\)) and prove the following two results.

\textbf{Theorem 1.1.} When \(M \in \{0,1\}^m \times n\) and \(W \in [0,1]^m \times n\), it is NP-hard to find an approximate solution of rank-one (WLRA) with objective function accuracy less than \(2^{-11(mn)^{-6}}\).

\textbf{Theorem 1.2.} When \(M \in [0,1]^m \times n\) and \(W \in \{0,1\}^m \times n\), it is NP-hard to find an approximate solution of rank-one (WLRA) with objective function accuracy less than \(2^{-12(mn)^{-7}}\).

In other words, it is NP-hard to find an approximate solution to rank-one (WLRA) with positive weights, and to the rank-one matrix approximation problem with missing data. Note that these results can be easily generalized to any fixed rank \(r\); see Remark 3.

The paper is organized as follows. We first review existing results about the complexity of (WLRA) in section 2. In section 3.1, we introduce the maximum-edge biclique problem (MBP), which is NP-hard. In sections 3.2 and 3.3, we prove Theorems 1.1 and 1.2 respectively, using polynomial-time reductions from the MBP. We conclude with a discussion and some open questions.

\textbf{1.1. Notation.} The set of real \(m\)-by-\(n\) matrices is denoted \(\mathbb{R}^{m \times n}\), or \(\mathbb{R}_+^{m \times n}\) when all the entries are required to be nonnegative. For \(A \in \mathbb{R}^{m \times n}\), we denote by \(A_{j}\) the \(j\)th column of \(A\), by \(A_{i}\) the \(i\)th row of \(A\), and by \(A_{ij}\) or \(A(i,j)\) the entry at position \((i,j)\); for \(b \in \mathbb{R}^{m \times 1} = \mathbb{R}^m\), we denote by \(b_i\) the \(i\)th entry of \(b\). The transpose of \(A\) is \(A^T\). The Frobenius norm of a matrix \(A\) is defined as \(\|A\|_F^2 = \sum_{i,j} (A_{ij})^2\), and \(\|\cdot\|_2\) is the usual Euclidean norm with \(\|b\|_2^2 = \sum_i b_i^2\). For \(W \in \mathbb{R}_+^{m \times n}\), the weighted
Fig. 2.1. Objective function of (WLRA) with respect to the parameters \((x, y)\).

Frobenius “norm” of a matrix \(A\) is defined\(^2\) by \(||A||_W^2 = \sum_{i,j} W_{ij} (A_{ij})^2\). The \(m\)-by-\(n\) matrix of all ones is denoted \(1_{m \times n}\), the \(m\)-by-\(n\) matrix of all zeros is denoted \(0_{m \times n}\), and \(I_n\) is the identity matrix of dimension \(n\). The smallest integer larger than or equal to \(x\) is denoted \(\lceil x \rceil\).

2. Previous results. WLRA is suspected to be much more difficult than the corresponding unweighted problem (i.e., when \(W\) is the matrix of all ones), which is efficiently solved using the singular value decomposition (SVD) [12]. In fact, it has been previously observed that the weighted problem might have several local minima which are not global [27], while this cannot occur in the unweighted case; see, e.g., [14, Theorem 1.14, p. 29].

Example 1. Let

\[
M = \begin{pmatrix}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix} \quad \text{and} \quad W = \begin{pmatrix}
1 & 100 & 2 \\
100 & 1 & 2 \\
1 & 1 & 1
\end{pmatrix}.
\]

In the case of a rank-one factorization \((r = 1)\) and a nonnegative matrix \(M\), one can impose without loss of generality that the solutions of (WLRA) are nonnegative. In fact, replacing any rank-one solution \(uv^T\) of (WLRA) by its componentwise absolute value \(|uv^T| = |u||v|^T\) cannot increase the objective function. Moreover, we can impose without loss of generality that \(||u||_2 = 1\), so that only two degrees of freedom remain. Indeed, for a given

\[
u(x, y) = \left(\frac{x}{\sqrt{1 - x^2 - y^2}}, \frac{y}{\sqrt{1 - x^2 - y^2}}\right), \quad \text{with} \quad \begin{cases} x \geq 0, y \geq 0, \\
x^2 + y^2 \leq 1,
\end{cases}
\]

the corresponding optimal \(v^*(x, y) = \arg\min_v ||M - u(x, y)v^T||_W^2\) can be computed easily.\(^3\) Figure 2.1 displays the graph of the objective function \(||M - u(x, y)v^*(x, y)^T||_W\)

\(^2||.||_W\) is a matrix norm if and only if \(W > 0\); else it is a seminorm.

\(^3\)This problem can be decoupled into \(n\) independent quadratic programs in one variable, and admits the following closed-form solution: \(v^*(x, y) = [(M \circ W)^T u]/[W^T (u \circ u)], \) where \(\circ\) (resp., \(\div\)) is the componentwise multiplication (resp., division).
with respect to parameters x and y; we observe four local minima, close to $(\sqrt{2}, 0)$, $(0, \sqrt{2})$, $(0, 0)$, and $(\sqrt{2}, \sqrt{2})$. We will see later in section 3 how this example has been generated.

However, if the rank of the weight matrix $W \in \mathbb{R}^{m \times n}_+$ is equal to one, i.e., $W = st^T$ for some $s \in \mathbb{R}^n_+$ and $t \in \mathbb{R}^m_+$, (WLRA) can be reduced to an unweighted low-rank approximation. In fact,

$$\|M - UV^T\|_W^2 = \sum_{i,j} W_{ij} (M - UV^T)_{ij}^2 = \sum_{i,j} s_it_j (M - UV^T)_{ij}^2 = \sum_{i,j} \left(\sqrt{s_it_j} M_{ij} - \sqrt{s_i} U_i(t^T V_j^T) \right)^2.$$

Therefore, if we define a matrix M' such that $M'_{ij} = \sqrt{s_it_j} M_{ij} \forall i, j$, an optimal WLRA (U, V) of M can be recovered from a solution (U', V') to the unweighted problem for matrix M' using $U_i = U_i' / \sqrt{s_i} \forall i$ and $V_j = V_j' / \sqrt{t_j} \forall j$.

When the weight matrix W is binary, WLRA amounts to approximating a matrix with missing data. This problem is closely related to low-rank matrix completion (MC) (see [2] and the references therein), which can be defined as

$$\text{MC} \quad \min_X \text{rank}(X) \quad \text{such that } X_{ij} = M_{ij} \text{ for } (i, j) \in \Omega,$$

where $\Omega \subseteq \{1, 2, \ldots, m\} \times \{1, 2, \ldots, n\}$ is the set of entries for which the values of M are known. (MC) has been shown to be NP-hard [5], and it is clear that an optimal solution X^* of (MC) can be obtained by solving a sequence of (WLRA) problems with the same matrix M, with

$$W_{ij} = \begin{cases} 1 & \text{if } (i, j) \in \Omega, \\ 0 & \text{otherwise,} \end{cases}$$

and for different values of the target rank ranging from $r = 1$ to $r = \min(m, n)$. The smallest value of r for which the objective function $\|M - UV^T\|_W^2$ of (WLRA) vanishes provides an optimal solution for (MC). This observation implies that it is NP-hard to solve (WLRA) for each possible value of r from 1 to $\min(m, n)$, since it would solve (MC). However, this does not imply that (WLRA) is NP-hard when r is fixed, and in particular when r equals one. In fact, checking whether (MC) admits a rank-one solution can be done easily.\footnote{The solution $X = uv^T$ can be constructed observing that the vector u must be a multiple of each column of M.}

Rank-one (WLRA) can be equivalently reformulated as

$$\inf_A \|M - A\|_W^2 \quad \text{such that } \text{rank}(A) \leq 1,$$

and, when W is binary, is the problem of finding, if possible, the best rank-one approximation of a matrix with missing entries. To the best of our knowledge, the complexity of this problem has never been studied formally; it will be shown to be NP-hard in the next section.

Another closely related result is the NP-hardness of the structure from motion (SFM) problem in the presence of noise and missing data [21]. Several points of a rigid object are tracked with cameras (we are given the projections of the three-dimensional
points on the two-dimensional camera planes, and the aim is to recover the structure of the object and the positions of the three-dimensional points. SFM can be written as a rank-four WLRA problem with a binary weight matrix. However, this result does not imply anything with regard to the complexity of rank-one WLRA.

An important feature of (WLRA) is exposed by the following example.

Example 2. Let

\[M = \begin{pmatrix} 1 & ? \\ 0 & 1 \end{pmatrix}, \]

where ? indicates that an entry is missing, i.e., that the weight associated with this entry is 0 (all other weights being equal to one). Observe that \(\forall (u, v) \in \mathbb{R}^m \times \mathbb{R}^n, \)

\[\text{rank}(M) = 2 \quad \text{and} \quad \text{rank}(uv^T) = 1 \Rightarrow \| M - uv^T \|_W > 0. \]

However, we have

\[\inf_{(u, v) \in \mathbb{R}^m \times \mathbb{R}^n} \| M - uv^T \|_W = 0. \]

In fact, one can check that with

\[u(\epsilon) = \begin{pmatrix} 1 \\ \epsilon \end{pmatrix} \quad \text{and} \quad v(\epsilon) = \begin{pmatrix} 1 \\ \epsilon^{-1} \end{pmatrix}, \]

we have \(\lim_{\epsilon \to 0} \| M - u(\epsilon)v(\epsilon)^T \|_W = 0. \)

This indicates that, when \(W \) has zero entries, the set of optimal solutions of (WLRA) might be empty. In other words, the (bounded) infimum of the objective function might be unattained. On the other hand, the infimum is always attained for \(W > 0 \) since \(\| . \|_W \) is then a norm.

For this reason, these two cases will be analyzed separately: in section 3.2, we study the computational complexity of the problem when \(W > 0 \), and, in section 3.3, the case of a binary \(W \) (i.e., the problem with missing data).

3. Complexity of rank-one (WLRA).

In this section, we use polynomial-time reductions from the MBP to prove Theorems 1.1 and 1.2.

3.1. Maximum-edge biclique problem.

A bipartite graph is a graph whose vertices can be partitioned into two disjoint sets such that there is no edge between two vertices in the same set. The MBP in a bipartite graph is the problem of finding a complete bipartite subgraph (a biclique) with the maximum number of edges.

Let \(M \in \{0, 1\}^{m \times n} \) be the biadjacency matrix of a bipartite graph \(G_b = (V_1 \cup V_2, E) \) with \(V_1 = \{s_1, \ldots, s_m\}, V_2 = \{t_1, \ldots, t_n\} \), and \(E \subseteq (V_1 \times V_2) \), i.e.,

\[M_{ij} = 1 \iff (s_i, t_j) \in E. \]

The cardinality of \(E \) will be denoted \(|E| = \| M \|_F^2 \leq mn. \)

For example, Figure 3.1 displays the graph \(G_b \) generated by the matrix \(M \) of Example 1. With this notation, the MBP in a bipartite graph can be formulated as

5 Missing data arise because the points may not always be visible by the cameras, e.g., in the case of a rotation.

6 With the additional constraint that the last row of \(V \) must be all ones, i.e., \(V_r = 1_{1 \times n} \).
follows [11]:

\[
\min_{u,v} ||M - uv^T||_F^2, \\
(MBP) \quad u_i v_j \leq M_{ij} \forall i, j, \\
\quad u \in \{0,1\}^m, v \in \{0,1\}^n.
\]

where \(u_i = 1\) (resp., \(v_j = 1\)) means that node \(s_i\) (resp., \(t_j\)) belongs to the solution, \(u_i = 0\) (resp. \(v_j = 0\)) otherwise. The first constraint guarantees feasible solutions of (MBP) to be bicliques of \(G_b\). In fact, it is equivalent to the implication

\[
M_{ij} = 0 \Rightarrow u_i = 0 \text{ or } v_j = 0;
\]

i.e., if there is no edge between vertices \(s_i\) and \(t_j\), they cannot simultaneously belong to a solution. The objective function minimizes the number of edges outside the biclique, which is equivalent to maximizing the number of edges inside the biclique. Notice that the minimum of (MBP) is \(|E| - |E^*|\), where \(|E^*|\) denotes the number of edges in an optimal biclique.

The decision version of the MBP

\textit{Given }K\textit{, does }G_b\textit{ contain a biclique with at least }K\textit{ edges?}

has been shown to be NP-complete [23] in the usual Turing machine model [9], which is our framework in this paper. Therefore, computing \(|E| - |E^*|\), the optimal value of (MBP), is NP-hard.

3.2. Low-rank matrix approximation with positive weights. In order to prove NP-hardness of rank-one (WLRA) with positive weights (\(W > 0\)), let us consider the following instance:

\[
(W-1d) \quad p^* = \min_{u \in \mathbb{R}^m, v \in \mathbb{R}^n} ||M - uv^T||_W^2,
\]

with \(M \in \{0,1\}^{m \times n}\) the biadjacency matrix of a bipartite graph \(G_b = (V,E)\) and the weight matrix defined as

\[
W_{ij} = \begin{cases}
1 & \text{if } M_{ij} = 1, \\
d & \text{if } M_{ij} = 0,
\end{cases} \quad 1 \leq i \leq m, 1 \leq j \leq n,
\]

where \(d \geq 1\) is a parameter.

Intuitively, increasing the value of \(d\) makes the zero entries of \(M\) more important in the objective function, which leads them to be approximated by small values. This observation will be used to show that, for \(d\) sufficiently large, the optimal value \(p^*\) of (W-1d) will be close to \(|E| - |E^*|\), the optimal value of (MBP) (Lemma 3.3).

A maximal biclique in \(G_b\) is a biclique not contained in a larger biclique, and can be seen as a “locally” optimal solution of (MBP). We will show that, as the value
of parameter d increases, the local minima of (W-1d) get closer to binary vectors describing maximal bicliques in G_b.

Example 1 illustrates the situation: the graph G_b corresponding to matrix M (cf. Figure 3.1) contains four maximal bicliques $\{s_1, s_3, t_1, t_3\}$, $\{s_2, s_3, t_2, t_3\}$, $\{s_1, s_2, s_3, t_3\}$, and the weight matrix W that was used is similar to the case $d = 100$ in problem (W-1d). We now observe that (W-1d) has four local optimal solutions as well (cf. Figure 2.1) close to $(\sqrt{2}, 0)$, $(0, \sqrt{2})$, $(0, 0)$ and $(\sqrt{2}, \sqrt{2})$. There is a one-to-one correspondence between these solutions and the four maximal bicliques listed above (in this order). For example, for $(x, y) = (\sqrt{2}, 0)$ we have $u(x, y) = (\sqrt{2}, 0, \sqrt{2})^T$, $v^*(x, y)$ is approximately equal to $(\sqrt{2}, 0, \sqrt{2})^T$, and this solution corresponds to the maximal biclique $\{s_1, s_3, t_1, t_3\}$.

Notice that a similar idea was used in [10] to prove NP-hardness of the rank-one nonnegative factorization problem $\min_{u \in \mathbb{R}^{m}_+, v \in \mathbb{R}^{n}_+} ||M - uv^T||_F$, where the zero entries of M were replaced by sufficiently large negative numbers.

Remark 1 (link with classical quadratic penalty method). It is worth noting that (W-1d) can be viewed as the application of the classical quadratic penalty approach to the biclique problem; see, e.g., [22, section 17.1]. In fact, defining $\tilde{F} = \{(i, j) | M_{ij} = 1\}$ and its complement $F = \{(i, j) | M_{ij} = 0\}$, the biclique problem can be formulated as

\[
\min \sum_{(i, j) \in \tilde{F}} (1 - u_i v_j)^2 \text{ such that } u_i v_j = 0 \forall (i, j) \in \tilde{F}.
\]

Indeed, in this formulation, it is clear that any optimal solution can be chosen such that vectors u and v are binary, from which the equivalence with problem (MBP) easily follows. Penalizing (quadratically) the equality constraints in the objective, we obtain

\[
P_d(u, v) = \sum_{(i, j) \in \tilde{F}} (1 - u_i v_j)^2 + d \sum_{(i, j) \in \tilde{F}} (u_i v_j)^2,
\]

where $d \geq 0$ is the penalty parameter. We now observe that our choice of W at the beginning of this section gives $P_d(u, v) = ||M - uv^T||_W^2$, i.e., (W-1d) is exactly equivalent to minimizing $P_d(u, v)$. This implies that, as d grows, minimizers of problem (W-1d) will tend to solutions of the biclique problem (MBP). Our goal is now to prove a more precise statement about the link between these two problems: we provide (in Lemma 3.3) an explicit value for d that guarantees a small difference between the optimal values of these two problems.

First, we establish that for any (u, v) such that $||M - uv^T||_W^2 \leq |E|$, the absolute value of the row or the column of uv^T corresponding to a zero entry of M must be smaller than a constant inversely proportional to \sqrt{d}.

Lemma 3.1. Let (i, j) be such that $M_{ij} = 0$. Then, $\forall (u, v)$ such that $||M - uv^T||_W^2 \leq |E|$, $\max_{1 \leq k \leq n} |u_i v_k|, \max_{1 \leq p \leq m} |u_p v_j| \leq \frac{\sqrt{4|E|^2}}{d}$.

Proof. Without loss of generality, u and v can be scaled such that $||u||_2 = ||v||_2$ without changing the product uv^T; i.e., we replace u by $u' = \sqrt{\frac{||u||_2^2}{||v||_2^2}} u$ and v by $v' = \sqrt{\frac{||v||_2^2}{||u||_2^2}} v$ so that $||u'||_2 = ||v'||_2 = \sqrt{||u||_2^2||v||_2^2}$ and $u'v'^T = uv^T$. First, observe
that since $||.||_W$ is a norm,
\[||uv^T||_W - \sqrt{|E|} = ||uv^T||_W - ||M||_W \leq ||M - uv^T||_W \leq \sqrt{|E|}. \]

Since all entries of W are larger than 1 ($d \geq 1$), we have
\[||u||_2 ||v||_2 = ||uv^T||_F \leq ||uv^T||_W \leq \sqrt{4|E|}, \]
and then $||u||_2 = ||v||_2 \leq \sqrt{4|E|}$.

Moreover, $d(0 - u_iv_j)^2 \leq ||M - uv^T||_W^2 \leq |E|$, so that $|u_i v_j| \leq \sqrt{\frac{|E|}{d} }$, which implies that either $|u_i| \leq \sqrt{\frac{|E|}{d}}$ or $|v_j| \leq \sqrt{\frac{|E|}{d}}$. Combining the above inequalities with the fact that $(\max_{1 \leq k \leq n} |v_k|)$ and $(\max_{1 \leq p \leq m} |u_p|)$ are bounded above by $||u||_2 = ||v||_2 \leq \sqrt{4|E|}$ completes the proof. \qed

We now prove the following general lemma which, combined with Lemma 3.1 above, will allow us to derive a lower bound on the objective function of (W-1d) (it will also be used in the analysis of the problem with missing data in section 3.3).

Lemma 3.2. Let $M \in \{0,1\}^{m \times n}$ be the biadjacency matrix of a bipartite graph $G_b = (V,E)$, let $W \in \mathbb{R}^{m \times n}_+$ be a weight matrix such that $W_{ij} = 1$ for each pair (i,j) satisfying $M_{ij} = 1$, and let (u,v) be such that
\[(3.2) \quad \min \left(\max_{1 \leq k \leq n} |u_i v_k|, \max_{1 \leq p \leq m} |u_p v_j| \right) \leq c \]
for each pair (i,j) satisfying $M_{ij} = 0$, where $0 < c \leq 1$. Also let $p = |E| - |E^*|$ be the optimal objective function value of (MBP). Then, if $p > 0$, we have
\[||M - uv^T||_W > p(1 - 2c). \]

Proof. Define the biclique corresponding to the following set $\Omega_c(u,v) \subseteq \{1,2,\ldots,m\} \times \{1,2,\ldots,n\}$:

\[\Omega_c(u,v) = \{ i \mid \exists j \text{ such that } |u_i v_j| > c \} \times \{ j \mid \exists i \text{ such that } |u_i v_j| > c \}. \]

This biclique is part of the original graph; i.e., every edge in $\Omega_c(u,v)$ belongs to G_b. Indeed, if $M_{ij} = 0$, then the pair (i,j) cannot belong to $\Omega_c(u,v)$ since, by (3.2), the absolute value of either the ith row or the jth column of uv^T is smaller than c. By construction, we also have that the entries M_{ij} corresponding to pairs (i,j) not in the biclique $\Omega_c(u,v)$ are approximated by values smaller than c. The error corresponding to a unit entry of M_{ij} not in the biclique $\Omega_c(u,v)$ is then at least $(1 - c)^2$ (because the corresponding weight W_{ij} is equal to one). Since there are at least $p = |E| - |E^*|$ such entries (because there are $|E|$ unit entries in M and at most $|E^*|$ pairs in biclique $\Omega_c(u,v)$, we have
\[||M - uv^T||_W^2 \geq (1 - c)^2 p > p(1 - 2c) = p - 2pc. \]

We can now provide lower and upper bounds on the optimal value p^* of (W-1d) and show that it is not too different from the optimal value $|E| - |E^*|$ of (MBP).

Lemma 3.3. Let $0 < \epsilon \leq 1$. For any value of parameter d such that $d \geq \frac{3\epsilon|E^*|}{c}$, the optimal value p^* of (W-1d) satisfies
\[|E| - |E^*| - \epsilon < p^* \leq |E| - |E^*|. \]
Proof. Let \((u, v)\) be an optimal solution of \((W-1d)\) (since \(W > 0\), there always exists at least one optimal solution; cf. section 2), and let us define \(p = |E| - |E^*| \geq 0\). If \(p = 0\), then \(p^* = 0\), and the result is trivial (it is the case when the rank of \(M\) is one; i.e., \(G_0\) contains only one biclique). Otherwise, since any optimal solution of \((MBP)\) plugged into \((W-1d)\) achieves an objective function equal to \(p\), we must have

\[
p^* = ||M - uv^T||_W^2 \leq p = |E| - |E^*|,
\]

which gives the upper bound.

Since \(d\) is greater than \(4|E|^2\) for any \(0 < \epsilon \leq 1\), the constant \(\alpha = \sqrt[4]{4|E|^2/d}\) appearing in Lemma 3.1 is smaller than one. This means that Lemma 3.2 is applicable, so that we have

\[
||M - uv^T||_W^2 > p - 2\alpha p \geq p - 2\alpha|E| \geq p - \epsilon,
\]

which gives the lower bound (the last inequality follows from the fact that \(2\alpha|E| \leq \epsilon\) is equivalent to the condition \(d \geq \epsilon^4/4|E|^2\).

This result implies that for \(\epsilon = 1\), i.e., for \(d \geq (2|E|)^6\), we have \(|E| - |E^*| - 1 < p^* \leq |E| - |E^*|\), and therefore computing \(p^*\) exactly would allow us to recover \(|E^*|\) (since \(|E^*| = |E| - \lceil p^* \rceil\)), which is NP-hard. Since the reduction from \((MBP)\) to \((W-1d)\) is polynomial (it uses the same matrix \(M\) and a weight matrix \(W\) whose description has polynomial length), we conclude that solving \((W-1d)\) exactly is NP-hard. The next result shows that even solving \((W-1d)\) approximately is NP-hard.

Corollary 3.4. For any \(d \geq (2mn)^6\), \(M \in \{0,1\}^{m\times n}\), and \(W \in \{1, d\}^{m\times n}\), it is NP-hard to find an approximate solution of rank-one \((WLRA)\) with objective function accuracy less than \(1 - \frac{(2mn)^3}{d^{1/4}}\).

Proof. Let \(d \geq (2mn)^6\), \(0 < \epsilon = \frac{(2mn)^{3/2}}{d^{1/4}} < 1\), and let \((\bar{u}, \bar{v})\) be an approximate solution of \((W-1d)\) with objective function accuracy \((1 - \epsilon)\), i.e., \(p^* \leq \tilde{p} = ||M - \bar{u}\bar{v}^T||_W \leq p^* + 1 - \epsilon\). Since \(d = \frac{(2mn)^6}{\epsilon^4} \geq \frac{(2|E|)^6}{\epsilon^4}\), Lemma 3.3 applies and we have

\[
|E| - |E^*| - \epsilon < p^* \leq \tilde{p} \leq p^* + 1 - \epsilon \leq |E| - |E^*| + 1 - \epsilon.
\]

We finally observe that knowing \(\tilde{p}\) allows us to recover \(|E^*|\), which is NP-hard. In fact, adding \(\epsilon\) to the above inequalities gives \(|E| - |E^*| < \tilde{p} + \epsilon \leq |E| - |E^*| + 1\), and therefore

\[
|E^*| = |E| - \lceil \tilde{p} + \epsilon \rceil + 1.
\]

We are now in a position to prove Theorem 1.1, which deals with the hardness of rank-one \((WLRA)\) with bounded weights.

Proof of Theorem 1.1. Let us use Corollary 3.4 with \(W \in \{1, d\}^{m\times n}\), and define \(W' = \frac{1}{d}W \in \{1/d, 1\}^{m\times n}\). Clearly, replacing \(W\) by \(W'\) in \((W-1d)\) simply amounts to multiplying the objective function by \(\frac{1}{d}\), with \(||M - uv^T||_W^2 = \frac{1}{d^2}||M - uv^T||_{W'}^2\). Taking \(d^{1/4} = 2(2mn)^{3/2}\) in Corollary 3.4, we obtain that for \(M \in \{0,1\}^{m\times n}\) and \(W \in \{0,1\}^{m\times n}\), it is NP-hard to find an approximate solution of rank-one \((WLRA)\) with objective function accuracy less than \(\frac{1}{d^2}(1 - \frac{(2mn)^3}{d^{1/4}}) = \frac{1}{d^2} = 2^{-11}(mn)^{-6}\) \(\square\)

Remark 2. The above bounds on \(d\) have been crudely estimated and can be improved. Our main goal here was to show the existence of a polynomial-time reduction from \((MBP)\) to rank-one \((WLRA)\).
Remark 3. Using the same construction as in [11, Theorem 3], this rank-one NP-hardness result can be generalized to any factorization rank; i.e., approximate WLRA for any fixed rank r is NP-hard. The idea is the following: given a bipartite graph G_b with biadjacency matrix $M \in \{0,1\}^{m \times n}$, we construct a larger bipartite graph G'_b which is made of r disconnected copies of G_b, whose biadjacency matrix is therefore given by

$$M' = \begin{pmatrix} M & 0_{m \times n} & \cdots & 0_{m \times n} \\ 0_{m \times n} & M & 0_{m \times n} \\ \vdots & \ddots & \vdots \\ 0_{m \times n} & \cdots & M \end{pmatrix} \in \{0,1\}^{rm \times rn}.$$

Clearly, no biclique in this graph can be larger than a maximum biclique in G'_b, and there are (at least) r disjoint bicliques with such maximum size in G'_b. Letting $(U, V) \in \mathbb{R}^{rm \times r} \times \mathbb{R}^{r \times rn}$ be an optimal solution of the rank-r WLRA problem with M' above and weights $W' = M' + d(1_{rm \times rn} - M')$ defined as before, it can be shown that, for d sufficiently large, each rank-one factor $U_k V_k^T$ must correspond to a maximum biclique of G_b.

3.3. Low-rank matrix approximation with missing data. The above NP-hardness proof does not cover the case when W is binary, corresponding to missing data in the matrix to be approximated (or to low-rank matrix completion with noise). This corresponds to the following problem:

$$\inf_{U \in \mathbb{R}^{m \times r}, V \in \mathbb{R}^{n \times r}} \|M - UV^T\|_W^2 = \sum_{ij} W_{ij}(M - UV^T)_{ij}^2, \quad W \in \{0,1\}^{m \times n}.$$

In the same spirit as before, we consider the following rank-one version of the problem:

$$(\text{MD-1d}) \quad p^* = \inf_{u \in \mathbb{R}^{m \times t}, v \in \mathbb{R}^{n \times t}} \|M - uv^T\|_W^2,$$

with input data matrices M and W defined as follows:

$$M = \begin{pmatrix} M_b & 0_{s \times Z} \\ 0_{Z \times t} & dI_Z \end{pmatrix} \quad \text{and} \quad W = \begin{pmatrix} 1_{s \times t} & B_1 \\ B_2 & I_Z \end{pmatrix},$$

where $M_b \in \{0,1\}^{s \times t}$ is the biadjacency matrix of the bipartite graph $G_b = (V, E)$, $d > 1$ is a parameter, $Z = st - |E|$ is the number of zero entries in M_b, and $m = s + Z$ and $n = t + Z$ are the dimensions of M and W.

Binary matrices $B_1 \in \{0,1\}^{s \times Z}$ and $B_2 \in \{0,1\}^{Z \times t}$ are constructed as follows: assume that the Z zero entries of M_b can be enumerated as

$$\{M_b(i_1, j_1), M_b(i_2, j_2), \ldots, M_b(i_Z, j_Z)\},$$

and let k_{ij} be the (unique) index k ($1 \leq k \leq Z$) such that $(i_k, j_k) = (i, j)$ (therefore k_{ij} is defined only for pairs (i, j) such that $M_b(i, j) = 0$, and establishes a bijection between these pairs and the set $\{1, 2, \ldots, Z\}$). We now define matrices B_1 and B_2 as follows: for every index $1 \leq k_{ij} \leq Z$, we have

$$B_1(i, k_{ij}) = 1, \quad B_2(i', k_{ij}) = 0 \quad \forall i' \neq i,$$

$$B_2(k_{ij}, j) = 1, \quad B_2(k_{ij}, j') = 0 \quad \forall j' \neq j.$$
Equivalently, each column of \(B_1 \) (resp., row of \(B_2 \)) corresponds to a different zero entry \(M_b(i, j) \), and contains only zeros except for a one at position \(i \) within the column (resp., at position \(j \) within the row). Hence the matrix \(B_1 \) (resp., \(B_2 \)) contains only zero entries except \(Z \) entries equal to one, one in each column (resp., row).

In the case of Example 1, we get

\[
M = \begin{pmatrix}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 1 \\
\end{pmatrix}_{2 \times 3} \quad \text{and} \quad W = \begin{pmatrix}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
\end{pmatrix}_{3 \times 3};
\]

i.e., the matrix to be approximated can be represented as

\[
\begin{pmatrix}
1 & 0 & 1 & ? & 0 \\
0 & 1 & 1 & ? & 0 \\
1 & 1 & 1 & ? & ? \\
\end{pmatrix}.
\]

(3.3)

For any feasible solution \((u, v)\) of \((MD-1d)\), we also note
\[
\begin{align*}
 u &= \begin{pmatrix}
 u^{(b)} \\
 u^{(d)}
 \end{pmatrix} \in \mathbb{R}^m, \quad u^{(b)} \in \mathbb{R}^s \text{ and } u^{(d)} \in \mathbb{R}^Z, \\
 v &= \begin{pmatrix}
 v^{(b)} \\
 v^{(d)}
 \end{pmatrix} \in \mathbb{R}^n, \quad v^{(b)} \in \mathbb{R}^t \text{ and } v^{(d)} \in \mathbb{R}^Z.
\end{align*}
\]

We will show that this formulation ensures that, as \(d \) increases, the zero entries of matrix \(M_b \) (the biadjacency matrix of \(G_b \) which appears as the upper left block of matrix \(M \)) have to be approximated with smaller values. Hence, as for \((W-1d)\), we will be able to prove that the optimal value \(p^* \) of \((MD-1d)\) will have to get close to the minimal value \(|E| - |E^*|\) of \((MBP)\), implying NP-hardness of its computation.

Intuitively, when \(d \) is large, the lower right matrix \(dI_Z \) of \(M \) will have to be approximated by a matrix with large diagonal entries, since they are weighted by unit entries in matrix \(W \). Hence \(u^{(d)} \) has to be large for all \(1 \leq k_{ij} \leq Z \). We then have at least either \(u^{(d)}_{k_{ij}} \) or \(v^{(d)}_{k_{ij}} \) large for all \(k_{ij} \) (recall that each \(k_{ij} \) corresponds to a zero entry in \(M \) at position \((i, j)\); cf. definitions of \(B_1 \) and \(B_2 \) above). By construction, we also have two entries \(M(s + k_{ij}, j) = 0 \) and \(M(i, t + k_{ij}) = 0 \) with unit weights corresponding to the nonzero entries \(B_1(i, k_{ij}) \) and \(B_2(k_{ij}, j) \), which then also have to be approximated by small values. If \(u^{(d)}_{k_{ij}} \) (resp., \(v^{(d)}_{k_{ij}} \)) is large, then \(v^{(b)}_j \) (resp., \(u^{(b)}_i \)) will have to be small since \(u^{(d)}_i v^{(d)}_{k_{ij}} \approx 0 \) (resp., \(u^{(d)}_i v^{(d)}_{k_{ij}} \approx 0 \)). Finally, either \(u^{(b)}_i \) or \(v^{(b)}_j \) has to be small, implying that \(M_b(i, j) \) is approximated by a small value, because \((u^{(b)}, v^{(b)})\) can bounded independently of the value of \(d \).

We now proceed as in section 3.2. Let us first give an upper bound for the optimal value \(p^* \) of \((MD-1d)\).

Lemma 3.5. For \(d > 1 \), the optimal value \(p^* \) of \((MD-1d)\) is bounded above by \(|E| - |E^*|\), i.e.,

\[
p^* = \inf_{u \in \mathbb{R}^m, v \in \mathbb{R}^n} ||M - uv^T||_W^2 \leq |E| - |E^*|.
\]

(3.4)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
Proof. Let us build the following feasible solution \((u, v)\) of (MD-1d): \((u(b), v(b))\) is a (binary) optimal solution of (MBP) and \((u(d), v(d))\) is defined as\(^7\)

\[
(3.5) \quad u_{k_{ij}}^{(d)} = \begin{cases} d^K & \text{if } v_{i}^{(b)} = 0, \\
d^{1-K} & \text{if } v_{j}^{(b)} = 1, \end{cases} \quad \text{and} \quad v_{k_{ij}}^{(d)} = \begin{cases} d^{1-K} & \text{if } v_{i}^{(b)} = 0, \\
d^K & \text{if } v_{j}^{(b)} = 1, \end{cases}
\]

where \(K\) is a real parameter and \(k_{ij}\) is the index of the column of \(B_1\) and the row of \(B_2\) corresponding to the zero entry \((i, j)\) of \(M_b\) (i.e., \((i, j) = (i_{k_{ij}}, j_{k_{ij}})\)).

We have that

\[
(uv^T) \circ W = \begin{pmatrix} u^{(b)}v^{(b)T} & D_1 \\ D_2 & dI_Z \end{pmatrix},
\]

where \(\circ\) is the componentwise (or Hadamard) product between two matrices, and matrices \(D_1\) and \(D_2\) satisfy

\[
\begin{cases} D_i(l, p) = 0 & \text{if } B_i(l, p) = 0, \\
D_i(l, p) \in \{0, d^{1-K}\} & \text{if } B_i(l, p) = 1, \end{cases} \quad i = 1, 2.
\]

In fact, let us analyze the four blocks of \((uv^T) \circ W:\)

1. Upper left: the upper left block of \(W\) and \(uv^T\) are, respectively, the all-one matrix and \(u^{(b)}v^{(b)T}\).
2. Lower right: since the lower right block of \(W\) is the identity matrix, we need only consider the diagonal entries of the lower right block of \(uv^T\), which are given by \(u_{k_{ij}}v_{k_{ij}}^{(d)} = d\) for \(k_{ij} = 1, 2, \ldots, Z\); cf. (3.5).
3. Upper right and lower left: by definition of \(B_1\) and \(B_2\), the only entries of \(D_1\) and \(D_2\) which may be different from zero are given by

\[
D_1(i, k_{ij}) = u_i^{(b)} v_{k_{ij}}^{(d)} \quad \text{and} \quad D_2(k_{ij}, j) = u_{k_{ij}}^{(d)} v_j^{(b)}
\]

for all \((i, j)\) such that \(M_b(i, j) = 0\). By construction, we have either \(v_j^{(b)} = 0\) or \(v_j^{(b)} = 1\). If \(v_j^{(b)} = 0\), then \(v_{k_{ij}}^{(d)} = d^{1-K}\) by (3.5), and we have \(D_1(i, k_{ij}) = u_i^{(b)} v_{k_{ij}}^{(d)} \in \{0, d^{1-K}\}\) and \(D_2(k_{ij}, j) = 0\). If \(v_j^{(b)} = 1\), we have \(u_i^{(b)} = 0\) (since \(M_b(i, j) = 0\)) and \(u_{k_{ij}}^{(d)} = d^{1-K}\) by (3.5) whence \(D_1(i, k_{ij}) = 0\) and \(D_2(k_{ij}, j) = d^{1-K}\).

Finally, \(D_1\) and \(D_2\) have at most \(Z\) nonzero entries (recall that \(Z\) is the number of zero entries in \(M_b\), which are all equal to \(d^{1-K}\)); therefore,

\[
(3.6) \quad p^* \leq \|M - uv^T\|^2_W \leq |E| - |E^*| + 2Zd^{2(1-K)} \quad \forall K.
\]

Since \(d > 1\), taking the limit \(K \to +\infty\) gives the result. \(\Box\)

Example 3. Let us illustrate the construction of Lemma 3.5 on the matrix from Example 1, which contains two maximum bicliques with four edges, including the one corresponding to \(u^{(b)} = (0, 1, 1)^T\) and \(v^{(b)} = (0, 1, 1)^T\). Taking \(u = (0, 1, 1, d^{1-K}, d^K)^T\)

\(^7\)Notice that this construction is not symmetric, and the variant using \(u^{(b)}\) instead of \(v^{(b)}\) to define \(u^{(d)}\) and \(v^{(d)}\) is also possible.
and \(v = (0, 1, 1, d^K, d^{1-K})^T \), we obtain

\[
\begin{pmatrix}
1 & 0 & 1 & 0 & ? \\
0 & 1 & 1 & ? & 0 \\
? & 0 & ? & ? & d \\
0 & ? & ? & d & ?
\end{pmatrix}
\approx
\begin{pmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & d^K & d^{1-K} \\
0 & d^K & d^K & d^{2-K} & d^{2(1-K)}
\end{pmatrix},
\]

with \(\|M - uv^T\|^2_W = (|E| - |E^*|) + 2d^{2(1-K)} = 3 + 2d^{2(1-K)} \), which is less than the bound \(3 + 4d^{2(1-K)} \) guaranteed by (3.6).

We now prove a property similar to Lemma 3.1 for any solution with objective value smaller than \(|E|\).

Lemma 3.6. Let \(d > \sqrt{|E|} \) and \((i, j)\) be such that \(M_b(i, j) = 0 \). Then, the following holds for any pair \((u, v)\) such that \(\|M - uv^T\|^2_W \leq |E| \):

\[
\min \left(\max_{1 \leq k \leq n} |u_i v_k|, \max_{1 \leq p \leq m} |u_p v_j| \right) \leq \frac{\sqrt{2} |E|^\frac{3}{2}}{(d - \sqrt{|E|})^\frac{3}{2}}.
\]

Proof. Without loss of generality, we set \(\|u^{(b)}\|_2 = \|v^{(b)}\|_2 \) by scaling \(u \) and \(v \) without changing \(uv^T \). Observe that

\[
\|u^{(b)}\|_2\|v^{(b)}\|_2 - \sqrt{|E|} = \|u^{(b)}v^{(b)T}\|_F - \|M_b\|_F \leq \|M_b - u^{(b)}v^{(b)T}\|_F \leq \|M - uv^T\|_W \leq \sqrt{|E|},
\]

we have \(\|u^{(b)}\|_2\|v^{(b)}\|_2 \leq 2\sqrt{|E|} \) and \(\|u^{(b)}\|_2 = \|v^{(b)}\|_2 \leq \sqrt{2|E|} \).

Assume that \(M_b(i, j) \) is zero for some pair \((i, j)\) and let \(k = k_j \) denote the index of the corresponding column of \(B_1 \) and row of \(B_2 \) (i.e., such that \(B_1(i, k) = B_2(k, j) = 1 \)). By construction, \(u^{(d)}_k v^{(d)}_k \) has to approximate \(d \) in the objective function. This implies that \((u^{(d)}_k v^{(d)} - d)^2 \leq |E| \) and then,

\[
u^{(d)}_k v^{(d)}_k \geq d - \sqrt{|E|} > 0.
\]

Suppose that \(|u^{(d)}_k| \) is greater than \(|v^{(d)}_k| \) (the case where \(|v^{(d)}_k| \) is greater than \(|u^{(d)}_k| \) is similar), which implies that \(|u^{(d)}_k| \geq (d - |E|^{\frac{1}{2}})^{\frac{1}{2}} \). Moreover, since \(B_2(k, j) \) is a unit weight, we have that \(u^{(d)}_k v_j \) has to approximate zero in the objective function, implying

\[
(u^{(d)}_k v_j - 0)^2 \leq |E| \quad \Rightarrow \quad |u^{(d)}_k v_j| \leq \sqrt{|E|}.
\]

Hence

\[
|v_j| \leq \frac{\sqrt{|E|}}{|u^{(d)}_k|} \leq \frac{|E|}{(d - \sqrt{|E|})^{\frac{1}{2}}},
\]

and since \((\max_{1 \leq p \leq m} |u_p|) \) is bounded by \(\|u^{(b)}\|_2 \leq \sqrt{2}|E|^\frac{3}{2} \), the proof is complete.

Using Lemma 3.2, we can now derive a lower bound for the value of \(p^* \).

Lemma 3.7. Let \(0 < \epsilon \leq 1 \). For any value of parameter \(d \) strictly greater than \(\frac{8|E|^\frac{3}{2} + |E|^\frac{1}{2}}{\epsilon^2} \), the infimum \(p^* \) of (MD-1d) satisfies

\[
|E| - |E^*| - \epsilon < p^*.
\]
Proof. Let us note that \(p = |E| - |E^{*}|. \) If \(p = 0 \), then the result is trivial since \(p^* = 0 \). Otherwise, suppose that \(p^* \leq p - \epsilon \) and let \(\beta = \frac{\sqrt{V(|E|)}}{(d - \sqrt{|E|})^{1/2}}. \) First observe that \(d > \frac{8(|E| + |E|)^rac{3}{2}}{\epsilon^2} + |E|^\frac{1}{2} \) is equivalent to \(2|E|\beta < \epsilon. \) Then, by continuity of (MD-1d), for any \(\delta \) such that \(\delta < \epsilon \), there exists a pair \((u, v)\) such that

\[
||M_b - u^{(b)} v^{(b)\top}||_W^2 \leq ||M - u v^\top||_W^2 \leq p - \delta \leq |E|.
\]

In particular, let us take \(\delta = 2|E|\beta < \epsilon. \) Observe that \(\beta \leq 1 \) as soon as \(d \geq 2|E|^\frac{1}{2} + |E|^\frac{1}{2} \) (which is guaranteed because \(0 < \epsilon \leq 1 \)). By Lemmas 3.6 and 3.2 (applied on matrix \(M_b \) and the solution \((u^{(b)}, v^{(b)})\)), we then have

\[
p - 2\beta p < ||M_b - u^{(b)} v^{(b)\top}||_W^2 \leq ||M - u v^\top||_W^2 \leq p - \delta.
\]

Dividing the above inequalities by \(p > 0 \), we obtain

\[
1 - 2\beta < 1 - \frac{\delta}{p} < 1 - \frac{\delta}{|E|} \Rightarrow \delta < 2|E|\beta,
\]

a contradiction. \(\square \)

Corollary 3.8. For any \(d > 8(mn)^{7/2} + \sqrt{mn}, M \in \{0, 1, d\}^{m \times n}, \) and \(W \in \{0, 1\}^{m \times n}, \) it is NP-hard to find an approximate solution of rank-one (WLRA) with objective function accuracy \(1 - 2\beta \geq \frac{8(mn)^{7/4}}{d - \sqrt{mn}}. \)

Proof. Let \(d > 8(mn)^{7/2} + \sqrt{mn}, 0 < \epsilon = \frac{8(2mn)^{7/4}}{(d - \sqrt{mn})^{1/2}} < 1,\) and let \((\bar{u}, \bar{v})\) be an approximate solution of (W-1d) with absolute error \((1 - \epsilon)\), i.e., \(p^* \leq \tilde{p} = ||M - \bar{u} \bar{v}^\top||_W^2 \leq p^* + 1 - \epsilon. \) Lemma 3.7 applies because \(d = \frac{8(mn)^{7/2}}{\epsilon^2} + \sqrt{mn} \geq \frac{8(2mn)^{7/2}}{\epsilon^2} + |E|^1/2. \) Using Lemmas 3.5 and 3.7, the rest of the proof is identical to the one of Theorem 1.1. Since the reduction from (MBP) to (MD-1d) is polynomial (description of matrices \(W \) and \(M \) has polynomial length, since the increase in matrix dimensions from \(M_b \) to \(M \) is polynomial), we conclude that finding such an approximate solution for (MD-1d) is NP-hard. \(\square \)

We can now easily derive Theorem 1.2, which deals with the hardness of rank-one (WLRA) with a bounded matrix \(M. \)

Proof of Theorem 1.2. Replacing \(M \) by \(M' = \frac{1}{d} M \) in (MD-1d) gives an equivalent problem with objective function multiplied by \(\frac{1}{d}, \) since \(\frac{1}{d}||M - u v^\top||_W^2 = ||M' - \frac{uv^\top}{d}||_W^2. \) Taking \(d = 2\beta (mn)^{7/2} + \sqrt{mn} \) in Corollary 3.8, we find that it is NP-hard to compute an approximate solution of rank-one (WLRA) for \(M \in \{0, 1\}^{m \times n} \) and \(W \in \{0, 1\}^{m \times n}, \) and with objective function accuracy less than \(\frac{1}{d} (1 - \frac{2\sqrt{2}(mn)^{7/4}}{(d - \sqrt{mn})^{1/2}}) = \frac{1}{d} \geq 2^{-12(mn)^{-\frac{7}{2}}}. \)

\[\square\]

4. Concluding remarks. In this paper, we have studied the complexity of the weighted low-rank approximation (WLRA) problem, and proved that computing an approximate solution with some prescribed accuracy is NP-hard, already in the rank-one case, both for positive and binary weights (the latter also corresponding to low-rank matrix completion with noise, or PCA with missing data).

The following more general problem is sometimes also referred to as WLRA:

\[
\inf_{U \in \mathbb{R}^{m \times r}, V \in \mathbb{R}^{r \times n}} ||M - UV||_W^2.
\]
where \(||A||^2_{P} = \text{vec}(A)^T P \text{vec}(A) \), with \(\text{vec}(A) \) a vectorization of matrix \(A \) and \(P \) an \(mn \)-by-\(mn \) positive semidefinite matrix; see [25] and the references therein. Since our WLRA formulation corresponds to the special case of a diagonal (nonnegative) \(P \), our hardness results also apply to problem (4.1).

It is also worth pointing out that, when the data matrix \(M \) is nonnegative, any optimal solution to rank-one (WLRA) can be assumed to be nonnegative (see the discussion surrounding Example 1). Therefore, all the complexity results of this paper apply to the weighted nonnegative matrix factorization (weighted NMF) problem, which is the following low-rank matrix approximation problem with nonnegativity constraints on the factors:

\[
\min_{U \in \mathbb{R}^{m \times r}, V \in \mathbb{R}^{n \times r}} ||M - UV^T||^2_W \quad \text{such that } U \geq 0, V \geq 0.
\]

Hence, it is NP-hard to find an approximate solution to rank-one weighted NMF (used, e.g., in image processing [14, Chapter 6]) and to rank-one NMF with missing data (used, e.g., for collaborative filtering [3]). This is in contrast to unweighted rank-one NMF, which is polynomially solvable (e.g., taking the absolute value of the first rank-one factor generated by the SVD). Note that (unweighted) NMF has been shown to be NP-hard when \(r \) is not fixed [29] (i.e., when \(r \) is part of the input).

Nevertheless, many questions remain open, including the following:

- Our approximation results are rather weak. In fact, they require the objective function accuracy to increase with the dimensions of the input matrix, in proportion with \((mn)^{-6} \), which is somewhat counterintuitive. The reason is twofold: first, independently of the size of the matrix, we needed the objective function value of approximate solutions of problems (W-1d) and (MD-1d) to be no larger than the objective function of the optimal biclique solution plus one (in order to obtain \(|E^*| \) by rounding). Second, parameter \(d \) in problems (W-1d) and (MD-1d) depends on the dimensions of matrix \(M \). Therefore, when matrices \(W \) or \(M \) are rescaled between 0 and 1, the objective function accuracy is affected by parameter \(d \), and hence decreases with the dimensions of matrix \(M \). Strengthening of these bounds is a topic for further research.

- Moreover, as pointed out to us, these results say nothing about the hardness of approximation within a constant multiplicative factor. It would then be interesting to combine our reductions with inapproximability results for the biclique problem (which have yet to be investigated thoroughly; see, e.g., [28]) or construct reductions from other problems.

- When \(W \) is the matrix of all ones, WLRA can be solved in polynomial-time. We have shown that, when the ratio between the largest and the smallest entry in \(W \) is large enough, the problem is NP-hard (Theorem 1.1). It would be interesting to investigate the gap between these two facts; i.e., what is the minimum ratio between the entries of \(W \) that leads to an NP-hard WLRA problem?

- When rank(\(W \)) = 1, WLRA can be solved in polynomial-time (cf. section 2) while it is NP-hard for a general matrix \(W \) (with rank up to \(\min(m, n) \)). What is the complexity of (WLRA) if the rank of the weight matrix \(W \) is fixed and greater than one, e.g., if rank(\(W \)) = 2?

- When data are missing, the rank-one matrix approximation problem is NP-hard in general. Nevertheless, it has been observed [1] that when the given entries are sufficiently numerous, well distributed in the matrix, and affected by a relatively low level of noise, the original uncorrupted low-rank matrix
can be recovered accurately, with a technique based on convex optimization (minimization of the nuclear norm of the approximation, which can be cast as a semidefinite program). It would then be particularly interesting to analyze the complexity of the problem given additional assumptions on the data matrix, e.g., on the noise distribution, and deal in particular with situations related to applications.

Acknowledgments. We thank Chia-Tche Chang for his helpful comments. We are grateful to the insightful comments of the anonymous reviewers, which helped to improve the paper substantially.

REFERENCES

