University teachers’ *in situ* practices and comparison with students’ experiences: a case study

INDRUM 2020

September, 14th 2020

Stéphanie BRIDOUX - UMONS
Cécile de HOSSON - Université de Paris
Céline NIHOUL - UMONS
Plan

1. Research questions and theoretical framework
2. First results
3. Conclusion
University teachers’ teaching practices (UT).
Research context

- University teachers’ teaching practices (UT).
- A lot of research on this topic (Berthiaume, 2007; Trede, Macklin, & Bridges, 2012) but few of them have taken into account a disciplinary approach.
University teachers’ teaching practices (UT).

A lot of research on this topic (Berthiaume, 2007; Trede, Macklin, & Bridges, 2012) but few of them have taken into account a disciplinary approach.

In line with research on UT’s professional identity (Bridoux et al., 2019; de Hosson et al., 2015).
University teachers’ teaching practices (UT).

A lot of research on this topic (Berthiaume, 2007; Trede, Macklin, & Bridges, 2012) but few of them have taken into account a disciplinary approach.

In line with research on UT’s professional identity (Bridoux et al., 2019; de Hosson et al., 2015).

Focus on the consequences of UT’s practices on students’ experiences.
Theoretical framework

Theoretical environment : professional identity (Dubar, 1996; Tickle, 2000).
Theoretical environment: professional identity (Dubar, 1996; Tickle, 2000).

The professional identity specified in didactics

- Considering UT’s relationship to the discipline (epistemological relationship).
- Considering how UT relate to the way the discipline has to be taught (pedagogical relationship).
Theoretical environment: professional identity (Dubar, 1996; Tickle, 2000).

The professional identity specified in didactics

- Considering UT’s relationship to the discipline (epistemological relationship).
- Considering how UT relate to the way the discipline has to be taught (pedagogical relationship).

The study of these two relationships highlights norms, qualities and values that the UT assigns to his profession.

→ Better understanding of UT’s choices when they teach.
Hypothesis

Student’s success depends especially on the match between UT’s intentions and how students perceive them.
Research questions

Hypothesis
Student’s success depends especially on the match between UT’s intentions and how students perceive them.

Research questions
- Which dimensions of UT’s professional identity are reflected in their practices?
- What are the consequences of these dimensions on students’ experiences?
Methodology

- 2 UT from UMONS (Belgium): one in mathematics, one in physics.
- 17 students participating both courses.
- 3 steps:
 1. Interviews (30') with each UT: identify norms, qualities, values assigned to his teaching practices. → characterize the epistemological and pedagogical relationships UT has with his discipline.
 2. In situ observation (lecture): supports, examples, drawings, questions, ... → confront the dimensions identified in the interviews and the effective lecture.
 3. Questionnaires for students. → confront the dimensions identified in the interviews and students' experiences.
Methodology

- 2 UT from UMONS (Belgium): one in mathematics, one in physics.
- 17 students participating both courses.
- 3 steps:
 1. **Interviews (30’') with each UT**: identify norms, qualities, values assigned to his teaching practices.
 → characterize the epistemological and pedagogical relationships UT has with his discipline.
Methodology

- 2 UT from UMONS (Belgium): one in mathematics, one in physics.
- 17 students participating both courses.
- 3 steps:
 1. **Interviews (30’) with each UT**: identify norms, qualities, values assigned to his teaching practices.
 - characterize the epistemological and pedagogical relationships UT has with his discipline.
 2. **In situ observation (lecture)**: supports, examples, drawings, questions, ...
 - confront the dimensions identified in the interviews and the effective lecture.
Methodology

- 2 UT from UMONS (Belgium): one in mathematics, one in physics.
- 17 students participating both courses.
- 3 steps:
 1. Interviews (30’) with each UT: identify norms, qualities, values assigned to his teaching practices. → characterize the epistemological and pedagogical relationships UT has with his discipline.
 2. In situ observation (lecture): supports, examples, drawings, questions, ...
 → confront the dimensions identified in the interviews and the effective lecture.
 3. Questionnaires for students.
 → confront the dimensions identified in the interviews and students’ experiences.
Sample questions

<table>
<thead>
<tr>
<th>UTs</th>
<th>Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norms</td>
<td>What was easy/difficult?</td>
</tr>
<tr>
<td>What do students have to learn/understand?</td>
<td>What is easy/difficult?</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Qualities</td>
<td>Did you enjoy the course?</td>
</tr>
<tr>
<td>What is a good math/physics course?</td>
<td>Why?</td>
</tr>
<tr>
<td>Values</td>
<td>Did the examples help you to understand the course?</td>
</tr>
<tr>
<td>What is your approach?</td>
<td></td>
</tr>
<tr>
<td>Which supports?</td>
<td></td>
</tr>
<tr>
<td>Which examples?</td>
<td></td>
</tr>
</tbody>
</table>
Main aspects

- In **Mathematics (epistemological profile)**:
 - UT starts the course with examples of differential equations describing physical movements.
 - **Goals**: UT does all the mathematical details rigorously (value), aims for an in depth understanding (norm).
Interviews of UT before courses

Main aspects

- **In Mathematics (epistemological profile):**
 - UT starts the course with examples of differential equations describing physical movements.
 - **Goals:** UT does all the mathematical details rigorously (value), aims for an in depth understanding (norm).

- **In Physics (methodological profile):**
 - UT starts the course with examples on electric flow and Gauss theorem.
 - **Goals:** UT prepares students for evaluations (quality), introduces different methods that students need to remember for evaluations (value).
In situ observation

- There is consistency between UT’s goals and classroom implementations.
In situ observation

- There is consistency between UT’s goals and classroom implementations.
- In both courses, mathematics and physics are used in the examples.
In situ observation

- There is consistency between UT’s goals and classroom implementations.
- In both courses, mathematics and physics are used in the examples.
- UT’s profile influences the examples process.
In situ observation

- There is consistency between UT’s goals and classroom implementations.
- In both courses, mathematics and physics are used in the examples.
- UT’s profile influences the examples process.
 - In Mathematics: UT considers that students have the necessary physics basis to understand it.
 → The examples are too different from what students have learnt in physics.

In Physics: UT structures his course in methods to be remembered.

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

‹ » 🔍
In situ observation

- There is consistency between UT’s goals and classroom implementations.
- In both courses, mathematics and physics are used in the examples.
- UT’s profile influences the examples process.
 - In Mathematics: UT considers that students have the necessary physics basis to understand it.
 → The examples are too different from what students have learnt in physics.
 - In Physics: UT structures his course in methods to be remembered.
 → The course is close to what students have learnt and how they work.
Analysis of the questionnaires

Did you enjoy the course? Why?

<table>
<thead>
<tr>
<th>Mathematics</th>
<th>Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>87% didn’t like it because it was too fast and the presentation was unclear.</td>
<td>47% didn’t like it because it was hard to stay focused.</td>
</tr>
</tbody>
</table>
Analysis of the questionnaires

Did you enjoy the course? Why?

<table>
<thead>
<tr>
<th>Mathematics</th>
<th>Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>87% didn’t like it because it was too fast and the presentation was unclear.</td>
<td>47% didn’t like it because it was hard to stay focused.</td>
</tr>
</tbody>
</table>

Did the examples help you to understand the course? Why?

<table>
<thead>
<tr>
<th>Mathematics</th>
<th>Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>87% said no because the links between math and physics were difficult to identify.</td>
<td>70% said yes because it was easier to prepare for evaluations.</td>
</tr>
</tbody>
</table>
Research question 1

Which dimensions of UT’s professional identity are reflected in their practices?

- UTs’ practices are organized according to specific dimensions of professional identity: targeted understanding, selected examples, examples process, ...
- Teaching practices are influenced by the UT’s goals and understanding of the topic.
 ← epistemological profile vs methodological profile
Research question 2

What are the consequences of these dimensions on students’ experiences?

- In **Mathematics**: UT’s epistemological anchoring leads to gaps between his goals and the students’ experiences. It can even make it more difficult for the students.

- In **Physics**: the practices of the UT stems from a methodological profile and is constrained by pedagogical concerns. Students are more likely to embrace these practices.
Research question 2

What are the consequences of these dimensions on students’ experiences?

- In Mathematics: UT’s epistemological anchoring leads to gaps between his goals and the students’ experiences. It can even make it more difficult for the students.

- In Physics: the practices of the UT stems from a methodological profile and is constrained by pedagogical concerns. Students are more likely to embrace these practices.

Perspective: Focus on the effects of UTs’ practices on students’ intended learning.