Nonlinear Schrödinger problems: existence, symmetry and multiplicity

Ch. Grumiau

Institut de Mathématique
Université de Mons
Mons, Belgium

March 2012
Université de Lille
Introduction: the scientific method

1. To observe: by making experiences
2. To model: by using (differential) equations
3. To solve the modelization: by “studying” solutions of the equations
Introduction: the scientific method

1. To observe: by making experiences
2. To model: by using (differential) equations
3. To solve the modelization: by “studying” solutions of the equations
Introduction: the scientific method

1. To observe: by making experiences
2. To model: by using (differential) equations
3. To solve the modelization: by “studying” solutions of the equations
Introduction: the scientific method

1. To observe: by making experiences
2. To model: by using (differential) equations
3. To solve the modelization: by “studying” solutions of the equations

Straight-line motion:
Equation: \(u''(t) = 0 \)
Introduction: the scientific method

1. To observe: by making experiences
2. To model: by using (differential) equations
3. To solve the modelization: by “studying” solutions of the equations

Uniformly accelerated motion:
Equation: \(u''(t) - c = 0 \)

Parabola
Introduction: the scientific method

1. To observe: by making experiences
2. To model: by using (differential) equations
3. To solve the modelization: by “studying” solutions of the equations

Pendulum equation: $u'' - \sin u = 0$
To observe: by making experiences

To model: by using (differential) equations

To solve the modelization: by “studying” solutions of the equations

Aim:
particularized to some physical problems:

- study the differential equation related to the nonlinear Schroedinger problem
Let $\Omega \subseteq \mathbb{R}^N$ open bounded and $N \geq 2$.

Problem:

\[
\begin{cases}
-\Delta u + V(x)u = f(u), & \text{in } \Omega, \\
u = 0, & \text{on } \partial \Omega,
\end{cases}
\]

where $V : \overline{\Omega} \to \mathbb{R}$ and the nonlinear function $f : \mathbb{R} \to \mathbb{R}$ are continuous (and $f(0) = 0$).

We assume that solutions are **critical points** of the **energy functional**

\[
E_p : H^1_0 \to \mathbb{R} : u \mapsto \frac{1}{2} \int_{\Omega} |\nabla u|^2 + V(x)u^2 - \int_{\Omega} F(u),
\]

where $F(u) := \int_0^u f(s) \, ds$ and H is a Sobolev space.

Aim: To study the symmetries of non-zero solutions, number of non-zero solutions,...
Introduction: nonlinear Schroedinger Problems

Let $\Omega \subseteq \mathbb{R}^N$ open bounded and $N \geq 2$.

Problem:

$$\begin{cases} -\Delta u + V(x)u = f(u), \quad \text{in } \Omega, \\ u = 0, \quad \text{on } \partial \Omega, \end{cases}$$

where $V : \bar{\Omega} \to \mathbb{R}$ and the nonlinear function $f : \mathbb{R} \to \mathbb{R}$ are continuous (and $f(0) = 0$).

We assume that solutions are critical points of the energy functional

$$E_p : H^1_0 \to \mathbb{R} : u \mapsto \frac{1}{2} \int_{\Omega} |\nabla u|^2 + V(x)u^2 - \int_{\Omega} F(u),$$

where $F(u) := \int_0^u f(s) \, ds$ and H is a Sobolev space.

Aim: To study the symmetries of non-zero solutions, number of non-zero solutions,...
1. Lane–Emden problem ($V = 0$ and $f = u^p$): ground state solutions (non-trivial solution with minimal energy)
2. least energy nodal solutions (l.e.n.s.; sign-changing solution with minimal energy)
3. Generalizations
4. Future
Lane–Emden Problem

We consider, for $2 < p < 2^* := \frac{2N}{N-2}$,

$$
\begin{cases}
-\Delta u = |u|^{p-2}u, & \text{in } \Omega, \\
u = 0, & \text{on } \partial \Omega.
\end{cases}
$$

Solutions are critical points of the energy functional.

Energy functional

- $\mathcal{E}_p : H^1_0(\Omega) \to \mathbb{R} : u \mapsto \frac{1}{2} \int_\Omega |\nabla u|^2 - \frac{1}{p} \int_\Omega |u|^p$
- $\mathfrak{d}\mathcal{E}_p(u) : H^1_0(\Omega) \to \mathbb{R} : v \mapsto \int_\Omega \nabla u \nabla v - \int_\Omega |u|^{p-2} uv$

$H^1_0(\Omega) := \overline{C^2_0(\Omega)}$ for $\|u\|_{H^1_0}^2 := \int_\Omega |
\n0$ is always solution.

What for others?
Lane–Emden Problem

We consider, for $2 < p < 2^* := \frac{2N}{N-2}$,

\[
\begin{aligned}
-\Delta u &= |u|^{p-2}u, \quad \text{in } \Omega, \\
u &= 0, \quad \text{on } \partial \Omega.
\end{aligned}
\]

Solutions are \textbf{critical points} of the \textbf{energy functional}

\textbf{Energy functional}

\begin{itemize}
 \item $\mathcal{E}_p : H^1_0(\Omega) \to \mathbb{R} : u \mapsto \frac{1}{2} \int_{\Omega} |\nabla u|^2 - \frac{1}{p} \int_{\Omega} |u|^p$
 \item $d\mathcal{E}_p(u) : H^1_0(\Omega) \to \mathbb{R} : v \mapsto \int_{\Omega} \nabla u \nabla v - \int_{\Omega} |u|^{p-2}uv$
\end{itemize}

$H^1_0(\Omega) := \overline{C^2_0(\Omega)}$ for $\|u\|^2_{H^1_0} := \int_{\Omega} |\nabla u|^2$

0 is always solution.

What for others?
We consider, for \(2 < p < 2^* := \frac{2N}{N-2} \),

\[
\begin{align*}
-\Delta u &= |u|^{p-2} u, \quad \text{in } \Omega, \\
 u &= 0, \quad \text{on } \partial \Omega.
\end{align*}
\]

Solutions are \textbf{critical points} of the \textbf{energy functional}

\textbf{Energy functional}

- \(\mathcal{E}_p : H^1_0(\Omega) \to \mathbb{R} : u \mapsto \frac{1}{2} \int_\Omega |\nabla u|^2 - \frac{1}{p} \int_\Omega |u|^p \)

- \(\text{d}\mathcal{E}_p(u) : H^1_0(\Omega) \to \mathbb{R} : v \mapsto \int_\Omega \nabla u \nabla v - \int_\Omega |u|^{p-2} uv \)

\(H^1_0(\Omega) := \overline{C^2_0(\Omega)} \) for \(\|u\|_{H^1_0}^2 := \int_\Omega |\nabla u|^2 \)

0 is always solution.

\textbf{What for others?}
Lane–Emden problem ($V = 0$ and $f = u^p$): ground state solutions (non-trivial solution with minimal energy)

1. Existence
2. Examples (computing MPA)
3. Symmetry results

Least energy nodal solutions (l.e.n.s.; sign-changing solution with minimal energy)

Generalizations

Future
Existence of Ground State for\[\begin{cases} -\Delta u = |u|^{p-2} u, & \text{in } \Omega \\ u = 0, & \text{on } \partial \Omega. \end{cases}\]

The energy functional is not bounded from below.

Mountain-Pass theorem (A. Ambrosetti, P. H. Rabinowitz, ’73)

There exists a ground state solution. It is a one-signed function.

Sketch:
- The energy functional \mathcal{E}_p possesses a Mountain-Pass structure
- $\exists u_0 \neq 0, \mathcal{E}_p(u_0) = \inf_{u \neq 0} \max_{\lambda > 0} \mathcal{E}_p(\lambda u) = \inf_{u \in \mathcal{N}_p} \mathcal{E}_p(u)$
- For any sign-changing solution u: $\mathcal{E}_p(u^\pm) < \mathcal{E}_p(u)$, where $u^+ := \max(u, 0)$ and $u^- := \min(u, 0)$

$$\mathcal{E}_p(u) = \frac{1}{2} \int_\Omega |\nabla u|^2 - \frac{1}{p} \int_\Omega u^p$$

$\mathcal{N}_p := \{ u \neq 0 : (u, \mathcal{E}(u)) \in \text{“Top of the Mountain”} \}$ and is called

"Nehari manifold"
Existence of Ground State for \[-\Delta u = |u|^{p-2}u, \quad \text{in } \Omega \]
\[u = 0, \quad \text{on } \partial \Omega. \]

The energy functional is not bounded from below.

Mountain-Pass theorem (A. Ambrosetti, P. H. Rabinowitz, ’73)

There exists a ground state solution. It is a one-signed function.

Sketch:
- The energy functional \(E_p \) possesses a Mountain-Pass structure
- \(\exists u_0 \neq 0, \ E_p(u_0) = \inf_{u \neq 0} \max_{\lambda > 0} E_p(\lambda u) = \inf_{u \in \mathcal{N}_p} E_p(u) \)
- For any sign-changing solution \(u: E_p(u^+) < E_p(u) \), where \(u^+ := \max(u, 0) \) and \(u^- := \min(u, 0) \)

\[
E_p(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 - \frac{1}{p} \int_{\Omega} u^p
\]

\(\mathcal{N}_p := \{ u \neq 0 : (u, E(u)) \in \text{“Top of the Mountain”} \} \) and is called

"Nehari manifold"
Existence of Ground State for \[\begin{cases} -\Delta u = |u|^{p-2}u, & \text{in } \Omega \\ u = 0, & \text{on } \partial \Omega. \end{cases} \]

The energy functional is not bounded from below.

Mountain-Pass theorem (A. Ambrosetti, P. H. Rabinowitz, '73)

There exists a ground state solution. It is a one-signed function.

Sketch:

- The energy functional \(E_p \) possesses a Mountain-Pass structure
- \(\exists u_0 \neq 0, \ E_p(u_0) = \inf_{u \neq 0} \max_{\lambda > 0} E_p(\lambda u) = \inf_{u \in \mathcal{N}_p} E_p(u) \)
- For any sign-changing solution \(u \): \(E_p(u^\pm) < E_p(u) \), where \(u^+ := \max(u, 0) \) and \(u^- := \min(u, 0) \)

\[
E_p(u) = \frac{1}{2} \int_\Omega |\nabla u|^2 - \frac{1}{p} \int_\Omega u^p
\]

\[\mathcal{N}_p := \{ u \neq 0 : (u, E(u)) \in \"Top of the Mountain\" \} \] and is called

"Nehari manifold"
Remarks on \mathcal{N}_p

- \mathcal{N}_p is formed by all the non-zero functions u such that $d\mathcal{E}(u)u = 0$... maximization in the direction of u
- If $u \in \mathcal{N}_p$: $\mathcal{E}_p(u) = (\frac{1}{2} - \frac{1}{p})\|u\|^2$ (because $\|u\|^2 = \|u\|_{L^p}^p$)
- \mathcal{N}_p is a manifold of codimension 1. So, Morse index of a ground state solution is 1.
Mountain-Pass algorithm (MPA)

Y. S. Choi and P. J. McKenna in '92 and J. Zhou and Y. Li in '01

\[\mathcal{N}_p \]

Algorithm

1. Let \(u \in H^1_0 \) one-signed function and \(n \leftarrow 0 \)
2. Compute \(u_n \leftarrow P(u) \).
3. Deform the path: compute \(g \leftarrow \nabla \mathcal{E}(u_n) \).
4. If \(\| \nabla \mathcal{E}(u_n) \| \leq \varepsilon \) stop;
 else \(v \leftarrow P(u_n - g) \).
5. If \(\mathcal{E}(v) < \mathcal{E}(u_n) \), \(u_{n+1} \leftarrow v \), \(n \leftarrow n + 1 \) and go to step 3;
 else \(g \leftarrow g^2 \) and go to step 4.

Projection \(P : H^1_0 \rightarrow H^1_0 : u \mapsto \lambda_u u \in \mathcal{N}_p \).
Mountain-Pass algorithm (MPA)

Y. S. Choi and P. J. McKenna in ’92 and J. Zhou and Y. Li in ’01

Algorithm

1. Let $u \in H^1_0$ one-signed function and $n \leftarrow 0$

2. Compute $u_n \leftarrow P(u)$.

3. Deform the path: compute $g \leftarrow \nabla \mathcal{E}(u_n)$.

4. If $\| \nabla \mathcal{E}(u_n) \| \leq \varepsilon$ stop; else $v \leftarrow P(u_n - g)$.

5. If $\mathcal{E}(v) < \mathcal{E}(u_n)$, $u_{n+1} \leftarrow v$, $n \leftarrow n + 1$ and go to step 3; else $g \leftarrow g/\|g\|$ and go to step 4.

Projection $P : H^1_0 \rightarrow H^1_0 : u \mapsto \lambda_u u \in \mathcal{N}_p$.

\[\mathcal{N}_p\]
Mountain-Pass algorithm (MPA)

Y. S. Choi and P. J. McKenna in ’92 and J. Zhou and Y. Li in ’01

\[\mathcal{N}_p \]

\[-\nabla \mathcal{E}(u_n) \]

Algorithm

1. Let \(u \in H^1_0 \) one-signed function and \(n \leftarrow 0 \)
2. Compute \(u_n \leftarrow P(u) \).
3. Deform the path: compute \(g \leftarrow \nabla \mathcal{E}(u_n) \).
4. If \(\| \nabla \mathcal{E}(u_n) \| \leq \varepsilon \) stop; else \(v \leftarrow P(u_n + g) \).
5. If \(\mathcal{E}(v) < \mathcal{E}(u_n) \), \(u_{n+1} \leftarrow v \), \(n \leftarrow n + 1 \) and go to step 3; else \(g \leftarrow g/2 \) and go to step 4.

Projection \(P : H^1_0 \to H^1_0 : u \mapsto \lambda_u u \in \mathcal{N}_p \).
Mountain-Pass algorithm (MPA)

Y. S. Choi and P. J. McKenna in '92 and J. Zhou and Y. Li in '01

Projection $P : H^1_0 \to H^1_0 : u \mapsto \lambda_u u \in \mathcal{N}_p$.

Algorithm

1. Let $u \in H^1_0$ one-signed function and $n \leftarrow 0$
2. Compute $u_n \leftarrow P(u)$.
3. Deform the path : compute $g \leftarrow \nabla \mathcal{E}(u_n)$.
4. If $\|\nabla \mathcal{E}(u_n)\| \leq \varepsilon$ stop ;
 else $v \leftarrow P(u_n - g)$.
5. If $\mathcal{E}(v) < \mathcal{E}(u_n)$, $u_{n+1} \leftarrow v$, $n \leftarrow n + 1$ and go to step 3 ;
 else $g \leftarrow g^2$ and go to step 4.
Mountain-Pass algorithm (MPA)

Y. S. Choi and P. J. McKenna in '92 and J. Zhou and Y. Li in '01

\[\mathcal{N}_p \]

Algorithm

1. Let \(u \in H^1_0 \) one-signed function and \(n \leftarrow 0 \)
2. Compute \(u_n \leftarrow P(u) \).
3. Deform the path: compute \(g \leftarrow \nabla \mathcal{E}(u_n) \).
4. If \(\| \nabla \mathcal{E}(u_n) \| \leq \varepsilon \) stop; else \(v \leftarrow P(u_n - g) \).
5. If \(\mathcal{E}(v) < \mathcal{E}(u_n) \), \(u_{n+1} \leftarrow v \), \(n \leftarrow n + 1 \) and go to step 3; else \(g \leftarrow \frac{g}{2} \) and go to step 4.

Projection \(P : H^1_0 \to H^1_0 : u \mapsto \lambda_u u \in \mathcal{N}_p \).
Algorithm

1. Let \(u \in H^1_0 \) one-signed function and \(n \leftarrow 0 \)
2. Compute \(u_n \leftarrow P(u) \).
3. Deform the path: compute \(g \leftarrow \nabla \mathcal{E}(u_n) \).
4. If \(\| \nabla \mathcal{E}(u_n) \| \leq \varepsilon \) stop;
 else \(v \leftarrow P(u_n - g) \).
5. If \(\mathcal{E}(v) < \mathcal{E}(u_n) \), \(u_{n+1} \leftarrow v \), \(n \leftarrow n + 1 \) and go to step 3;
 else \(g \leftarrow \frac{g}{2} \) and go to step 4.
Mountain-Pass algorithm (MPA)

Y. S. Choi and P. J. McKenna in ’92 and J. Zhou and Y. Li in ’01

\[\mathcal{N}_p \]

Algorithm

1. Let \(u \in H^1_0 \) one-signed function and \(n \leftarrow 0 \)
2. Compute \(u_n \leftarrow P(u) \).
3. Deform the path : compute \(g \leftarrow \nabla \mathcal{E}(u_n) \).
4. If \(\| \nabla \mathcal{E}(u_n) \| \leq \varepsilon \) stop ;
 else \(v \leftarrow P(u_n - g) \).
5. If \(\mathcal{E}(v) < \mathcal{E}(u_n) \), \(u_{n+1} \leftarrow v \), \(n \leftarrow n + 1 \) and go to step 3 ;
 else \(g \leftarrow \frac{g}{2} \) and go to step 4.

Projection \(P : H^1_0 \rightarrow H^1_0 : u \mapsto \lambda_u u \in \mathcal{N}_p \).
Accumulation points of \((u_n)_{n \in \mathbb{N}}\) are **local minimum** of \(E_p\) in \(\mathcal{N}_p\).

They are one-signed solutions of Problem \((P)\).

We can **not** be sure that they are **global minimum** in \(\mathcal{N}_p\).
Examples: convex domains \((-\Delta u = u^3)\)

Mountain-Pass algo (MPA) of Y. Choi and J. McKenna, ’93:
Symmetry result for ground state

Theorem (B. Gidas, W. M. Ni, L. Nirenberg, '79)

When Ω is “convex”,

- one and only one ground state (up to a multiplicative factor of value -1)
 - it respects reflections that leaves Ω invariant
 - in particular, on balls, ground state is radial

- one and only one maximum (resp. minimum) at the positive (resp. negative) ground state

- positive (resp. negative) ground state is decreasing (resp. increasing) from this maximum to the boundary

Idea: moving-plane method
Symmetry result for ground state

Theorem (B. Gidas, W. M. Ni, L. Nirenberg, '79)

When Ω is "convex",

- one and only one ground state (up to a multiplicative factor of value -1)
 - it respects reflections that leaves Ω invariant
 - in particular, on balls, ground state is radial
- one and only one maximum (resp. minimum) at the positive (resp. negative) ground state
- positive (resp. negative) ground state is decreasing (resp. increasing) from this maximum to the boundary

Idea: moving-plane method
Non-convex domains \((-\Delta u = u^3)\)
1. Lane–Emden problem ($V = 0$ and $f = u^p$): ground state solutions (non-trivial solution with minimal energy)

2. least energy nodal solutions (l.e.n.s.; sign-changing solution with minimal energy)
 - Existence
 - Examples (MMPA) and symmetry results
 - Symmetries on rectangle, for small p,
 - Symmetries on radial domains, for small p,
 - Symmetries on square, for small p,
 - Symmetry breaking for some rectangles,
 - Nodal line structure
 - What about p large on general domains?

3. Generalizations

4. Future
Existence of nodal solution

Theorem (A. Castro, J. Cossio, J. M. Neuberger, '97)

There exists a nodal solution with minimal energy.

Projection: \(sH_0^1 \setminus \{0\} \rightarrow \mathcal{M}_p : u \mapsto P_{\mathcal{N}_p}(u^+) + P_{\mathcal{N}_p}(u^-) \).

Remark 1: Maximization in \(\{tu^+ + su^- : t, s \geq 0\} \)

Remark 2: Gidas, Ni and Nirenberg method fails.
Ex: Rectangle ($-\Delta u = u^3$)

MMPA of G. Costa, Z. Ding and J. M. Neuberger ('01)
Symmetries

- λ_i: i^{th} eigenvalue of $-\Delta$ with DBC s.t. $\lambda_1 < \lambda_2 < \ldots$
- E_i: eigenspace related to λ_i

Theorem (G., C. Troestler, CRAS)

For p close to 2, if $\lambda_2(\Omega)$ is simple,

- *for any reflection R s.t. $R(\Omega) = \Omega$, l.e.n.s. respects the symmetry or antisymmetry of functions in E_2 with respect to R.*
- *it is unique up to a multiplicative factor of value -1.*
Sketch of the proof: "Simple" case (1/3)

\[\begin{aligned}
-\Delta u &= |u|^{p-2}u, & \text{in } \Omega \\
\quad u &= 0, & \text{on } \partial \Omega
\end{aligned}\]

(P)

Up to a rescaling by \(\lambda_2^{\frac{-1}{p-2}}\), the study of symmetries for (P) is the same as for problem

\[\begin{aligned}
-\Delta u &= \lambda_2 |u|^{p-2}u, & \text{in } \Omega \\
\quad u &= 0, & \text{on } \partial \Omega
\end{aligned}\]

(P2)

Let \((u_p)_{p>2}\) a family of least energy nodal solutions of (P2).

Let \((u_p)_{p>2}\) a **family of least energy nodal solutions** of (P2).
To obtain that $(u_p)_{p>2}$ is *bounded* in $H^1_0(\Omega)$ and *away* from 0.
Sketch of the proof (3/3)

1. \(\|u_p\| \leq K \Rightarrow u_p \rightharpoonup u_0 \text{ up to a subsequence} \)
 \(\Rightarrow u_p \rightarrow u_0 \text{ up to a subsequence} \)

2. \(u_0 \in E_2 \)

3. \(u_p \) stays away from 0

4. computing \(u_p, \lambda := \frac{u_p}{\|u_p\|} \text{ s.t.} \)
 \((u_p, \lambda, \lambda \|u_p\|^{p-2}) \rightarrow (\pm e_2, \lambda) \)

5. By IFT, the curve starting from \(e_2 \) and solution of
 \[
 \begin{cases}
 \Delta u(x) + \lambda |u(x)|^{p-2} u(x) = 0, & x \in \Omega \\
 u(x) = 0, & x \in \partial \Omega \\
 \|u\| = 1
 \end{cases}
 \]
 is unique

6. symmetries of \(e_2 \) are respected
Sketch of the proof (3/3)

1. \(\|u_p\| \leq K \Rightarrow u_p \rightharpoonup u_0 \) up to a subsequence
 \[\Rightarrow u_p \to u_0 \] up to a subsequence

2. \(u_0 \in E_2 \)

3. \(u_p \) stays away from 0

4. computing \(u_{p,\lambda} := \frac{u_p}{\|u_p\|} \) s.t.
 \((u_{p,\lambda}, \lambda_2 \|u_p\|^{p-2}) \to (\pm e_2, \lambda_2) \)

5. By IFT, the curve starting from \(e_2 \) and solution of
 \[
 \begin{cases}
 \Delta u(x) + \lambda |u(x)|^{p-2} u(x) = 0, & x \in \Omega \\
 u(x) = 0, & x \in \partial\Omega \\
 \|u\| = 1
 \end{cases}

 is unique

6. symmetries of \(e_2 \) are respected
Sketch of the proof (3/3)

1. \[\| u_p \| \leq K \Rightarrow u_p \to u_0 \text{ up to a subsequence} \]
 \[\Rightarrow u_p \to u_0 \text{ up to a subsequence} \]

2. \[u_0 \in E_2 \]

3. \[u_p \text{ stays away from } 0 \]

4. Computing \[u_{p,\lambda} := \frac{u_p}{\| u_p \|} \text{ s.t.} \]
 \[(u_{p,\lambda}, \lambda_2 \| u_p \|^{p-2}) \to (\pm e_2, \lambda_2) \]

5. By IFT, the curve starting from \(e_2 \) and solution of
 \[
 \begin{cases}
 \Delta u(x) + \lambda |u(x)|^{p-2} u(x) = 0, & x \in \Omega \\
 u(x) = 0, & x \in \partial \Omega \\
 \| u \| = 1
 \end{cases}
 \]
 is unique

6. symmetries of \(e_2 \) are respected
Sketch of the proof (3/3)

1. $\|u_p\| \leq K \Rightarrow u_p \rightarrow u_0$ up to a subsequence
 \[\Rightarrow u_p \rightarrow u_0\] up to a subsequence

2. $u_0 \in E_2$

3. u_p stays away from 0

4. computing $u_p, \lambda := \frac{u_p}{\|u_p\|}$ s.t.
 \[(u_p, \lambda, \lambda_2\|u_p\|^{p-2}) \rightarrow (\pm e_2, \lambda_2)\]

5. By IFT, the curve starting from e_2 and solution of
 \[
 \begin{cases}
 \Delta u(x) + \lambda |u(x)|^{p-2}u(x) = 0, & x \in \Omega \\
 u(x) = 0, & x \in \partial \Omega \\
 \|u\| = 1
 \end{cases}
 \]
 is unique

6. symmetries of e_2 are respected
Sketch of the proof (3/3)

1. $\|u_p\| \leq K \Rightarrow u_p \rightharpoonup u_0$ up to a subsequence
 $\Rightarrow u_p \rightarrow u_0$ up to a subsequence

2. $u_0 \in E_2$

3. u_p stays away from 0

4. computing $u_{p,\lambda} := \frac{u_p}{\|u_p\|}$ s.t.
 $(u_{p,\lambda}, \lambda_2 \|u_p\|^{p-2}) \rightarrow (\pm e_2, \lambda_2)$

5. By IFT, the curve starting from e_2 and solution of
 \[
 \begin{cases}
 \Delta u(x) + \lambda |u(x)|^{p-2} u(x) = 0, & x \in \Omega \\
 u(x) = 0, & x \in \partial \Omega \\
 \|u\| = 1
 \end{cases}
 \]
 is unique

6. symmetries of e_2 are respected
Sketch of the proof (3/3)

1. \[\|u_p\| \leq K \Rightarrow u_p \rightarrow u_0 \text{ up to a subsequence} \]
 \[\Rightarrow u_p \rightarrow u_0 \text{ up to a subsequence} \]

2. \(u_0 \in E_2 \)

3. \(u_p \) stays away from 0

4. computing \(u_p, \lambda := \frac{u_p}{\|u_p\|} \) s.t.
 \[(u_p, \lambda, \lambda_2 \|u_p\|^{p-2}) \rightarrow (\pm e_2, \lambda_2) \]

5. By IFT, the curve starting from \(e_2 \) and solution of
 \[\begin{cases}
 \Delta u(x) + \lambda |u(x)|^{p-2} u(x) = 0, & x \in \Omega \\
 u(x) = 0, & x \in \partial \Omega \\
 \|u\| = 1
 \end{cases} \]
 is unique

6. symmetries of \(e_2 \) are respected
Sketch of the proof (3/3)

1. \[\|u_p\| \leq K \Rightarrow u_p \rightharpoonup u_0 \text{ up to a subsequence} \]
 \[\Rightarrow u_p \to u_0 \text{ up to a subsequence} \]

2. \(u_0 \in E_2 \)

3. \(u_p \) stays away from 0

4. computing \(u_{p,\lambda} := \frac{u_p}{\|u_p\|} \text{ s.t.} \)
 \[(u_{p,\lambda}, \lambda_2 \|u_p\|^{p-2}) \to (\pm e_2, \lambda_2) \]

5. By IFT, the curve starting from \(e_2 \) and solution of
 \[
 \begin{cases}
 \Delta u(x) + \lambda |u(x)|^{p-2} u(x) = 0, & x \in \Omega \\
 u(x) = 0, & x \in \partial \Omega \\
 \|u\| = 1
 \end{cases}
 \]
 is unique

6. symmetries of \(e_2 \) are respected
Sketch of the proof (3/3)

1. $\|u_p\| \leq K \Rightarrow u_p \rightarrow u_0$ up to a subsequence
 $\Rightarrow u_p \rightarrow u_0$ up to a subsequence

2. $u_0 \in E_2$

3. u_p stays away from 0

4. computing $u_p, \lambda := \frac{u_p}{\|u_p\|}$ s.t.
 $\left(u_p, \lambda, \lambda \|u_p\|^{p-2} \right) \rightarrow (\pm e_2, \lambda)$

5. By IFT, the curve starting from e_2 and solution of
 \[
 \begin{cases}
 \Delta u(x) + \lambda |u(x)|^{p-2} u(x) = 0, & x \in \Omega \\
 u(x) = 0, & x \in \partial \Omega \\
 \|u\| = 1
 \end{cases}
 \]
 is unique

6. symmetries of e_2 are respected
Sketch of the proof (3/3)

1. \(\| u_p \| \leq K \Rightarrow u_p \rightarrow u_0 \) up to a subsequence
 \[\Rightarrow u_p \rightarrow u_0 \] up to a subsequence

2. \(u_0 \in E_2 \)

3. \(u_p \) stays away from 0

4. computing \(u_{p,\lambda} := \frac{u_p}{\| u_p \|} \) s.t.
 \[(u_{p,\lambda}, \lambda_2 \| u_p \|^{p-2}) \rightarrow (\pm e_2, \lambda_2) \]

5. By IFT, the curve starting from \(e_2 \) and solution of
 \[
 \begin{cases}
 \Delta u(x) + \lambda |u(x)|^{p-2} u(x) = 0, & x \in \Omega \\
 u(x) = 0, & x \in \partial \Omega \\
 \| u \| = 1
 \end{cases}
 \]
is unique

6. symmetries of \(e_2 \) are respected
The family \((u_p)_{p>2}\) is bounded.

Let \(e_2 \in E_2 \setminus \{0\}\), we obtain

\[
\mathcal{E}_p(u_p) = \left(\frac{1}{2} - \frac{1}{p}\right) \|u_p\|^2 \leq \left(\frac{1}{2} - \frac{1}{p}\right) \left\{ t_p^+ \|e_2^+\|^2 + t_p^- \|e_2^-\|^2 \right\}
\]
u_p stays away from 0

Lemma

The family $(u_p)_{p>2}$ stays away from 0.

- $u_p \in \mathcal{M}_p \rightarrow \exists v_p \in \mathcal{N}_p$ such that $\int_{\Omega} v_pe_1 = 0$ and $\|v_p\| \leq \|u_p\|

- By using the Hölder inequality, $\lambda_2 \int_{\Omega} v_p^2 \leq \int_{\Omega} |\nabla v_p|^2$ and Sobolev's inequalities, $(v_p)_{p>2}$ stays away from 0 ($\|v_p\|_p \geq (S\lambda_2^{-1})^{\frac{2^*}{2^*-2}}$).

$$\int u_p^- e_1 < 0$$

$$\int u_p^+ e_1 > 0$$

$\bullet \ u_p$
Lemma

The family \((u_p)_{p>2}\) stays away from 0.

- \(u_p \in \mathcal{M}_p \rightarrow \exists v_p \in \mathcal{N}_p\) such that \(\int_{\Omega} v_p e_1 = 0\) and \(\|v_p\| \leq \|u_p\|\)
- By using the Hölder inequality, \(\lambda_2 \int_{\Omega} v_p^2 \leq \int_{\Omega} |\nabla v_p|^2\) and Sobolev's inequalities, \((v_p)_{p>2}\) stays away from 0 (\(\|v_p\|_p \geq (S \lambda_2^{-1})^{2^* - 2} \frac{1}{p}\)).

\[
v_p : \int \nu_p e_1 = 0 \text{ and } \|v_p\| \leq \|u_p\|
\]

\[
\int u_p^- e_1 < 0
\]

\[
\int u_p^+ e_1 > 0
\]

\[
u_p = u_p^+ + u_p^-
\]
Lemma

The family \((u_p)_{p>2}\) stays away from 0.

- \(u_p \in M_p \rightarrow \exists v_p \in N_p\) such that \(\int_{\Omega} v_p e_1 = 0\) and \(\|v_p\| \leq \|u_p\|\)
- By using the Hölder inequality, \(\lambda_2 \int_{\Omega} v_p^2 \leq \int_{\Omega} |\nabla v_p|^2\) and Sobolev's inequalities, \((v_p)_{p>2}\) stays away from 0 (\(\|v_p\|_p \geq (S\lambda_2^{-1})^{\frac{2^*}{2^* - 2} p}\)).

\[
\begin{align*}
\int u_p^- e_1 &< 0 \\
\int u_p^+ e_1 &> 0
\end{align*}
\]
Lemma

The family $(u_p)_{p>2}$ stays away from 0.

- $u_p \in M_p \rightarrow \exists v_p \in N_p$ such that $\int_{\Omega} v_p e_1 = 0$ and $\|v_p\| \leq \|u_p\|
- By using the Hölder inequality, $\lambda_2 \int_{\Omega} v_p^2 \leq \int_{\Omega} |\nabla v_p|^2$ and Sobolev's inequalities, $(v_p)_{p>2}$ stays away from 0 ($\|v_p\|_p \geq (S\lambda_2^{-1})^{\frac{2}{2^*}-\frac{1}{p}}$).

$v_p : \int v_p e_1 = 0$ and $\|v_p\| \leq \|u_p\|$
\(u_p \) stays away from 0

Lemma

The family \((u_p)_{p>2}\) stays away from 0.

- \(u_p \in \mathcal{M}_p \rightarrow \exists v_p \in \mathcal{N}_p \) such that \(\int_{\Omega} v_p e_1 = 0 \) and \(\|v_p\| \leq \|u_p\| \)
- By using the Hölder inequality, \(\lambda_2 \int_{\Omega} v_p^2 \leq \int_{\Omega} |\nabla v_p|^2 \) and Sobolev's inequalities, \((v_p)_{p>2}\) stays away from 0 (\(\|v_p\|_p \geq (S\lambda_2^{-1})^{\frac{2^*}{2^*-2}} \)).
Lemma

The family \((u_p)_p>2\) stays away from 0.

- \(u_p \in \mathcal{M}_p \rightarrow \exists v_p \in \mathcal{N}_p\) such that \(\int_\Omega v_p e_1 = 0\) and \(\|v_p\| \leq \|u_p\|\)
- By using the Hölder inequality, \(\lambda_2 \int_\Omega v_p^2 \leq \int_\Omega |\nabla v_p|^2\) and Sobolev’s inequalities, \((v_p)_p>2\) stays away from 0 \((\|v_p\|_p \geq (S\lambda_2^{-1})^{2^*_p-2}^{1-2})\).
Lemma

The family \((u_p)_{p>2}\) stays away from 0.

- \(u_p \in \mathcal{M}_p \rightarrow \exists v_p \in \mathcal{N}_p\) such that \(\int_\Omega v_p e_1 = 0\) and \(\|v_p\| \leq \|u_p\|\)
- By using the Hölder inequality, \(\lambda_2 \int_\Omega v_p^2 \leq \int_\Omega |\nabla v_p|^2\) and Sobolev’s inequalities, \((v_p)_{p>2}\) stays away from 0 (\(\|v_p\|_p \geq (S\lambda_2^{-1})^{2^* - 2} \frac{1}{p}\)).
Using IFT

Let the problem \((P_\lambda)\)

\[
\begin{cases}
\Delta u + \lambda |u|^{p-2}u = 0, & \text{in } \Omega \\
u = 0, & \text{on } \partial \Omega \\
\|u\| = 1
\end{cases}
\]

\(\varphi : [2, 2^*] \times H^1_0 \times \mathbb{R} \to H^1_0 \times \mathbb{R}
\)

\((p, v, \lambda) \mapsto (-(-\Delta)^{-1}(\lambda|v|^{p-2}v) + v, \|v\|^2 - 1)\)

Roots of \(\varphi\) are the solutions of \((P_\lambda)\).

\(\left(dH^1_{(\varphi(2, \varepsilon, \lambda))} \right)(v, t) =
\)

\((-\Delta)^{-1}(\lambda v) + v - t(-\Delta)^{-1}(\varepsilon), 2\int_\Omega (\nabla v \cdot \nabla \varepsilon) \) is injective (and so bijective)

By IFT: one and only one curve.
Using IFT

Let the problem \((P_\lambda)\)

\[
\begin{cases}
\Delta u + \lambda |u|^{p-2} u = 0, & \text{in } \Omega \\
u = 0, & \text{on } \partial \Omega \\
\|u\| = 1
\end{cases}
\]

\[\varphi : [2, 2^*] \times H^1_0 \times \mathbb{R} \to H^1_0 \times \mathbb{R}
\]

\[(p, \nu, \lambda) \mapsto (-(-\Delta)^{-1}(\lambda |\nu|^{p-2} \nu) + \nu, \|\nu\|^2 - 1)\]

Roots of \(\varphi\) are the solutions of \((P_\lambda)\).
Using IFT

Let the problem \((P_\lambda)\)

\[
\begin{cases}
\Delta u + \lambda |u|^{p-2}u = 0, & \text{in } \Omega \\
u = 0, & \text{on } \partial \Omega \\
\|u\| = 1
\end{cases}
\]

\[\varphi : [2, 2^*] \times H^1_0 \times \mathbb{R} \to H^1_0 \times \mathbb{R}\]

\[(p, \nu, \lambda) \mapsto (-(-\Delta)^{-1}(\lambda|\nu|^{p-2}\nu) + \nu, \|\nu\|^2 - 1)\]

Roots of \(\varphi\) are the solutions of \((P_\lambda)\).

\[\left(\text{d}_{H^1_0(\Omega) \times \mathbb{R}} \varphi(2, e_2, \lambda_2)\right)(\nu, t) =
-(-\Delta)^{-1}(\lambda_2 \nu) + \nu - t(-\Delta)^{-1}(e_2), 2 \int_\Omega (\nabla e_2 \nabla \nu) \text{ is injective (and so bijective)}\]

By IFT: one and only one curve.
Let the problem \((P_\lambda)\)

\[
\begin{aligned}
\Delta u + \lambda |u|^{p-2} u &= 0, \quad \text{in } \Omega \\
u &= 0, \quad \text{on } \partial \Omega \\
\|u\| &= 1
\end{aligned}
\]

\[
\varphi : [2, 2^*] \times H^1_0 \times \mathbb{R} \to H^1_0 \times \mathbb{R} \\
(p, \nu, \lambda) \mapsto \left(-(-\Delta)^{-1}(\lambda|\nu|^{p-2}\nu) + \nu, \|\nu\|^2 - 1\right)
\]

Roots of \(\varphi\) are the solutions of \((P_\lambda)\).

- \[
\left(d_{H^1_0(\Omega) \times \mathbb{R}} \varphi(2, e_2, \lambda_2)\right)(\nu, t) = \\
-(-\Delta)^{-1}(\lambda_2 \nu) + \nu - t(-\Delta)^{-1}(e_2), 2\int_{\Omega}(\nabla e_2 \nabla \nu) \text{ is injective (and so bijective)}
\]

- By IFT: one and only one curve.
Ex: radial domains \((-\Delta u = u^3)\)
Theorem (A. Aftalion, F. Pacella, ’04)

On a radial domain, l.e.n.s. can not be radial.
Theorem (T. Bartsch, T. Weth, M. Willem, ’05)

On a radial domain, l.e.n.s. is **Schwarz foliated symmetric**. So, it is **even** with respect to $N - 1$ orthogonal directions.

\[u(A) \geq u(B) = u(C) \geq u(D) \]
What about the last direction?

Theorem (G., C. Troestler, EJDE)

For \(p \) close to 2, on radial domains, l.e.n.s. is **odd** with respect to a direction and is **unique** up to rotations.
Sketch of the proof

- When \(\lambda_2 \) isn’t simple, we **can’t use** the previous IFT (\(d\varphi(2, e_2, \lambda_2) \) may **not** be injective).

Idea

Work with \(V \subseteq H^1_0 \): functions which respect a symmetry rotation around \((0, 0, \ldots, 1)\).

- as l.e.n.s. is **Schwarz foliated symmetric**, we assume that \((u_p)_{p>2} \subseteq V\)
- as \(\dim(E_2 \cap V) = 1 \), we use IFT to prove there exists **one and only one** curve of solutions in \(V \)
- as all functions in \(E_2 \cap V \) are antisymmetric with respect to the orthogonal hyperplane of \((0, \ldots, 0, 1)\), \(u_p \) is **odd** in one direction
- **remark**: unicity of the solution (up to rotations).
When λ_2 isn’t simple, we **cannot use** the previous IFT ($d\varphi(2, e_2, \lambda_2)$ may **not** be injective).

Idea

*Work with $V \subseteq H^1_0$: functions which respect a **symmetry rotation** around $(0, 0, \ldots, 1)$.***

- As l.e.n.s. is Schwarz foliated symmetric, we assume that $(u_p)_{p>2} \subseteq V$.
- As $\dim(E_2 \cap V) = 1$, we use IFT to prove there exists **one and only one** curve of solutions in V.
- As all functions in $E_2 \cap V$ are antisymmetric with respect to the orthogonal hyperplane of $(0, \ldots, 0, 1)$, u_p is **odd** in one direction.
- **Remark:** unicity of the solution (up to rotations).
Sketch of the proof

- When λ_2 isn’t simple, we **can’t use** the previous IFT ($d\varphi(2, e_2, \lambda_2)$ may **not** be injective).

Idea

*Work with $V \subseteq H^1_0$: functions which respect a **symmetry rotation** around $(0, 0, \ldots, 1)$.***

- as l.e.n.s. is **Schwarz foliated symmetric**, we assume that $(u_p)_{p>2} \subseteq V$
 - as $\dim(E_2 \cap V) = 1$, we use IFT to prove there exists **one and only one** curve of solutions in V
 - as all functions in $E_2 \cap V$ are antisymmetric with respect to the orthogonal hyperplane of $(0, \ldots, 0, 1)$, u_p is **odd** in one direction
 - **remark**: unicity of the solution (up to rotations).
Sketch of the proof

- When λ_2 isn’t simple, we **can’t use** the previous IFT ($d\varphi(2, e_2, \lambda_2)$ may **not** be injective).

Idea

Work with $V \subseteq H^1_0$: **functions which respect a symmetry rotation around** $(0, 0, \ldots, 1)$.

- as l.e.n.s. is **Schwarz foliated symmetric**, we assume that $(u_p)_{p>2} \subseteq V$
- as $\dim(E_2 \cap V) = 1$, we use IFT to prove there exists **one and only one** curve of solutions in V
- as all functions in $E_2 \cap V$ are antisymmetric with respect to the orthogonal hyperplane of $(0, \ldots, 0, 1)$, u_p is **odd** in one direction
- remark: unicity of the solution (up to rotations).
Sketch of the proof

- When λ_2 isn’t simple, we **can’t use** the previous IFT ($d\varphi(2, e_2, \lambda_2)$ may **not** be injective).

Idea

> Work with $V \subseteq H^1_0$: functions which respect a **symmetry rotation** around $(0, 0, \ldots, 1)$.

- as l.e.n.s. is **Schwarz foliated symmetric**, we assume that $(u_p)_{p>2} \subseteq V$
- as $\text{dim}(E_2 \cap V) = 1$, we use IFT to prove there exists **one and only one** curve of solutions in V
- as all functions in $E_2 \cap V$ are antisymmetric with respect to the orthogonal hyperplane of $(0, \ldots, 0, 1)$, u_p is **odd** in one direction

remark: unicity of the solution (up to rotations).
Sketch of the proof

- When \(\lambda_2 \) isn’t simple, we can’t use the previous IFT (\(d\varphi(2, e_2, \lambda_2) \) may not be injective).

Idea

Work with \(V \subseteq H^1_0 : \) functions which respect a symmetry rotation around \((0, 0, \ldots, 1)\).

- as l.e.n.s. is Schwarz foliated symmetric, we assume that \((u_p)_{p>2} \subseteq V\)
- as \(\text{dim}(E_2 \cap V) = 1 \), we use IFT to prove there exists one and only one curve of solutions in \(V \)
- as all functions in \(E_2 \cap V \) are antisymmetric with respect to the orthogonal hyperplane of \((0, \ldots, 0, 1)\), \(u_p \) is odd in one direction
- remark: unicity of the solution (up to rotations).
Ex: Square \((-\Delta u = u^3)\)
Theorem (D. Bonheure, V. Bouchez, G., J. Van Schaftingen, CCM)

For p close to 2, on a square, l.e.n.s. is odd with respect to the center.
Ideas for general domains

The IFT approach does not work.

New approach: general approach (but we lose the unicity!!!).

Let $M > 0$, $\exists \epsilon, \bar{p}_M > 0$.

Lemma (D. Bonheure, V. Bouchez, G., J. Van Schaftingen, CCM)

If $\|a(x) - \lambda_2\|_{L^{N/2}} < \epsilon$ and u solves $-\Delta u = a(x)u$ with DBC, then $P_{E_2}u = 0$ implies $u = 0$.

Theorem (D. Bonheure, V. Bouchez, G., J. Van Schaftingen, CCM)

$\forall p \in (2, \bar{p}_M)$, if $u_p, v_p \in B_M \setminus B_{\frac{1}{\lambda_2}}$ solve $-\Delta u = \lambda_2 |u|^{p-2}u$ with DBC, then $P_{E_2}u_p = P_{E_2}v_p$ implies $u_p = v_p$.

Ch. Grumiau (UMons)
The IFT approach does not work.
New approach: **general approach** (but we lose the unicity!!!).
Let $M > 0$, $\exists \varepsilon, \bar{p}_M > 0$,

Lemma (D. Bonheure, V. Bouchez, G., J. Van Schaftingen, CCM)

If $\|a(x) - \lambda_2\|_{L^{N/2}} < \varepsilon$ and u solves $-\Delta u = a(x)u$ with DBC, then $P_{E_2}u = 0$ implies $u = 0$.

Theorem (D. Bonheure, V. Bouchez, G., J. Van Schaftingen, CCM)

$\forall p \in (2, \bar{p}_M)$, if $u_p, v_p \in B_M \setminus B_{1\over M}$ solve $-\Delta u = \lambda_2|u|^{p-2}u$ with DBC, then $P_{E_2}u_p = P_{E_2}v_p$ implies $u_p = v_p$.
Ideas for general domains

The IFT approach does not work.
New approach: general approach (but we lose the unicity!!!).
Let $M > 0$, $\exists \epsilon, \bar{p}_M > 0$,

Lemma (D. Bonheure, V. Bouchez, G., J. Van Schaftingen, CCM)

If $\|a(x) - \lambda_2\|_{L^{N/2}} < \epsilon$ and u solves $-\Delta u = a(x)u$ with DBC, then $P_{E_2}u = 0$ implies $u = 0$.

Theorem (D. Bonheure, V. Bouchez, G., J. Van Schaftingen, CCM)

$\forall p \in (2, \bar{p}_M)$, if $u_p, v_p \in B_M \setminus B_{\frac{1}{M}}$ solve $-\Delta u = \lambda_2 |u|^{p-2}u$ with DBC, then $P_{E_2}u_p = P_{E_2}v_p$ implies $u_p = v_p$.
Proof of the lemma

Lemma (D. Bonheure, V. Bouchez, G., J. Van Schaftingen, CCM)

Let $M > 0$, $\exists \varepsilon, \bar{p}_M > 0$, if $\|a(x) - \lambda_2\|_{L^{N/2}} < \varepsilon$ and u solves $-\Delta u = a(x)u$ with DBC, then $u = 0$ or $P_{E_2}u \neq 0$.

Sketch: Let us work by contradiction. Fix $w = P_{E_1}u$ and $z = P_{(E_1+E_2)\perp}u$.

$$\|w\|^2 = \lambda_2 \int_\Omega w^2 + \int_\Omega (a(x) - \lambda_2)uw$$

$$\geq \frac{\lambda_2}{\lambda_1} \|w\|^2 - C \|a(x) - \lambda_2\|_{L^{N/2}} \|w\| \|u\|,$$

$$\|z\|^2 \leq \frac{\lambda_2}{\lambda_3} \|z\|^2 + C \|a(x) - \lambda_2\|_{L^{N/2}} \|z\| \|u\|.$$

$$\|w\| \leq \frac{\lambda_1 C}{\lambda_2 - \lambda_1} \|a(x) - \lambda_2\|_{L^{N/2}} \|u\| \text{ and } \|z\| \leq \frac{\lambda_3 C}{\lambda_3 - \lambda_2} \|a(x) - \lambda_2\|_{L^{N/2}} \|u\|.$$

As $P_{E_2}u = 0$, $\|u\|^2 = \|w\|^2 + \|z\|^2 \leq C \|a(x) - \lambda_2\|_{L^{N/2}}^2 \|u\|^2$.

Proof of the lemma

Lemma (D. Bonheure, V. Bouchez, G., J. Van Schaftingen, CCM)

Let \(M > 0, \exists \varepsilon, \bar{p}_M > 0, \) if \(\|a(x) - \lambda_2\|_{L^{N/2}} < \varepsilon \) and \(u \) solves \(-\Delta u = a(x)u\) with DBC, then \(u = 0 \) or \(P_{E_2} u \neq 0 \).

Sketch: Let us work by contradiction. Fix \(w = P_{E_1} u \) and \(z = P_{(E_1+E_2)^\perp} u \).

\[
\|w\|^2 = \lambda_2 \int_{\Omega} w^2 + \int_{\Omega} (a(x) - \lambda_2)uw \\
\geq \frac{\lambda_2}{\lambda_1} \|w\|^2 - C\|a(x) - \lambda_2\|_{L^{N/2}} \|w\|\|u\|, \\
\|z\|^2 \leq \frac{\lambda_2}{\lambda_3} \|z\|^2 + C\|a(x) - \lambda_2\|_{L^{N/2}} \|z\|\|u\|. \\
\|w\| \leq \frac{\lambda_1C}{\lambda_2-\lambda_1} \|a(x) - \lambda_2\|_{L^{N/2}} \|u\| \text{ and } \|z\| \leq \frac{\lambda_3C}{\lambda_3-\lambda_2} \|a(x) - \lambda_2\|_{L^{N/2}} \|u\|. \\
\|P_{E_2} u\| = \|w\|^2 + \|z\|^2 \leq C\|a(x) - \lambda_2\|_{L^{N/2}}^2 \|u\|^2.
\]
Proof of the lemma

Lemma (D. Bonheure, V. Bouchez, G., J. Van Schaftingen, CCM)

Let \(M > 0\), \(\exists \varepsilon, \bar{p}_M > 0\), if \(\| a(x) - \lambda_2 \|_{L^{N/2}} < \varepsilon\) and \(u\) solves \(-\Delta u = a(x)u\) with DBC, then \(u = 0\) or \(P_{E_2} u \neq 0\).

Sketch: Let us work by contradiction. Fix \(w = P_{E_1} u\) and \(z = P_{(E_1+E_2)\perp} u\).

\[
\| w \|^2 = \lambda_2 \int \Omega w^2 + \int \Omega (a(x) - \lambda_2)uw \geq \frac{\lambda_2}{\lambda_1} \| w \|^2 - C \| a(x) - \lambda_2 \|_{L^{N/2}} \| w \| \| u \|,
\]

\[
\| z \|^2 \leq \frac{\lambda_2}{\lambda_3} \| z \|^2 + C \| a(x) - \lambda_2 \|_{L^{N/2}} \| z \| \| u \|.
\]

\[
\| w \| \leq \frac{\lambda_1 C}{\lambda_2 - \lambda_1} \| a(x) - \lambda_2 \|_{L^{N/2}} \| u \| \text{ and } \| z \| \leq \frac{\lambda_3 C}{\lambda_3 - \lambda_2} \| a(x) - \lambda_2 \|_{L^{N/2}} \| u \|.
\]

As \(P_{E_2} u = 0\), \(\| u \|^2 = \| w \|^2 + \| z \|^2 \leq C \| a(x) - \lambda_2 \|^2_{L^{N/2}} \| u \|^2 \).
Unicity at projection fixed in E_2

Theorem (D. Bonheure, V. Bouchez, G., J. Van Schaftingen, CCM)

\[\forall p \in (2, \bar{p}_M), \text{ if } u_p, v_p \in B_M \setminus B_{\frac{1}{M}} \text{ solve } -\Delta u = \lambda_2 |u|^{p-2}u \text{ with DBC, then } u_p = v_p \text{ or } P_{E_2}u_p \neq P_{E_2}v_p. \]

Idea: equation verified by $u_p - v_p$ (Δ linear) + Lebesgue

Corollary 1: If (u_p) is a family of bounded solutions staying away from 0, for p close to 2, u_p respect symmetries of its projection on E_2.

Corollary 2: It is working for l.e.n.s.

Corollary 3: As second eigenfunctions odd with respect to the center, we obtain the expected symmetries on squares.
Unicity at projection fixed in E_2

Theorem (D. Bonheure, V. Bouchez, G., J. Van Schaftingen, CCM)

$$\forall p \in (2, \bar{p}_M), \text{ if } u_p, v_p \in B_M \setminus B_{\frac{1}{M}} \text{ solve } -\Delta u = \lambda_2 |u|^{p-2}u \text{ with DBC, then } u_p = v_p \text{ or } P_{E_2} u_p \neq P_{E_2} v_p.$$

Idea: equation verified by $u_p - v_p$ (Δ linear) + Lebesgue

Corollary 1: If (u_p) is a family of bounded solutions staying away from 0, for p close to 2, u_p respect symmetries of its projection on E_2.

Corollary 2: It is working for l.e.n.s.

Corollary 3: As second eigenfunctions odd with respect to the center, we obtain the expected symmetries on squares.
The square: diagonal or median?... limit functional and Nehari!

Accumulation points u_* verify
$\mathcal{E}^*_*(u_*) = \inf \{ \mathcal{E}^*_*(u) : u \in E_2 \setminus \{0\}, \; d\mathcal{E}^*_*(u)u = 0 \}$, where
$\mathcal{E}^*_* : E_2 \to \mathbb{R} : u \mapsto \frac{\lambda^2}{2} \int_\Omega u^2 - u^2 \log u^2$.

Idea: $0 = \lim_{p \to 2} \int_\Omega \frac{(|u_p|^{p-2}u_p - u_p)v}{p-2} = \int_\Omega u_* \log |u_*| v.$
The square: diagonal or median?...limit functional and Nehari!

Accumulation points u_* verify

$\mathcal{E}_*(u_*) = \inf\{\mathcal{E}_*(u) : u \in E_2 \setminus \{0\}, d\mathcal{E}_*(u)u = 0\}$, where

$\mathcal{E}_* : E_2 \to \mathbb{R} : u \mapsto \frac{\lambda_2}{2} \int_\Omega u^2 - u^2 \log u^2$.

Idea: $0 = \lim_{p \to 2} \int_\Omega \frac{(|u_p|^{p-2}u_p - u_p)v}{p-2} = \int_\Omega u_* \log |u_*| v$.
Limit functional on the limit Nehari manifold

\(\mathcal{E}_* \) has Mountain-Pass structure \(\rightarrow \) projection on the limit Nehari manifold.

![Graph showing eigenfunctions](image)

Eigenfunctions: \(e_\theta = \cos(\theta)v_1 + \sin(\theta)v_2 \), \(v_1 = \cos(\frac{\pi}{2}x)\sin(\pi y) \) and \(v_2 = \sin(\pi x)\cos(\frac{\pi}{2}y) \).

The diagonal seems to be “the winner”... Is it really true???
Limit functional on the limit Nehari manifold

\[E_* \] has Mountain-Pass structure \(\rightarrow \) projection on the limit Nehari manifold.

Eigenfunctions:

\[e_\theta = \cos(\theta) v_1 + \sin(\theta) v_2, \quad v_1 = \cos(\frac{\pi}{2} x) \sin(\pi y) \] and
\[v_2 = \sin(\pi x) \cos(\frac{\pi}{2} y). \]

The diagonal \textbf{seems} to be “the winner”... Is it really true???
Proposition (G., P. Hauweele, preprint)

Using interval arithmetic, we obtain that l.e.n.s. must be a diagonal function for p small.

Difficulties:

- Compute guaranteed upper and lower bounds
- Prove that the function is convex around the diagonal... difficult part as we need to control singularities in the integral
- Using a Lyapunov-Schmidt reduction.
Symmetry breaking

\[
\text{wide} = \pi \\
\text{length} = \pi + R
\]

\[
1 - \left(\frac{\pi}{\pi + R}\right)^2 = (p - 2)^2
\]

Idea: Results work for
\[- \div(A_p \nabla u) = \lambda_2 |u|^{p-2}u\]
Graph ($p = 6$)
What about \(p \) large and radial domains?

Theorem (M. Grossi, G., F. Pacella, submit in AIHP)

For \(p \to +\infty \), the \(L^\infty \)-norm of l.e.n.s. is going to \(\sqrt{e} \) and the nodal line intersects the boundary for large \(p \).

Sketch:

- A first blow-up: the maximum picks \(x_p^\pm \) are not going to the nodal line and the boundary too fast (i.e. \(\frac{d(x_p, NL_p \cap \partial \Omega)}{\varepsilon_p} \) where
 \[
 \varepsilon_p = \frac{1}{\sqrt{pu_p(x_p^{p-1})}}.
 \]
- A second blowup \(u_p : z_p^\pm : \varepsilon_p \Omega_{\pm} \ldots \)
- \(\| u_p^\pm \|_\infty \to \sqrt{e} \)
Nodal line structure
Nodal line structure
Linear problem $-\Delta u = \lambda_2 u$

Theorem (G. Alessandrini, '94)

On a convex domain Ω, in dimension 2, nodal line of $u \in E_2$ intersects $\partial \Omega$ in exactly 2 points.

Theorem (M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, N. Nadirashvili, '95)

There exists a not simply connected domain Ω such that nodal line of $u \in E_2$ does not intersect $\partial \Omega$.
Example of domain

nodal line
Lane–Emden problem ($V = 0$ and $f = u^p$): ground state solutions (non-trivial solution with minimal energy)

least energy nodal solutions (l.e.n.s.; sign-changing solution with minimal energy)

Generalizations

Future

1. Interval arithmetic and a posteriori estimates for finite element methods
2. Fourth order equations
3. ...
\[-\Delta u + u = \lambda |u|^{p-2} u\]

- Energy defined on the space $H := H^1$.
- Concerning l.e.n.s, it is working in the same way: family bounded and staying away from zero (for the good λ).
- Ground state solution respects symmetries of its projection in E_1 but maybe not for large p and positive solutions are not unique.
- We have the existence of a symmetry breaking.

1functions in L^2 with weak derivative in L^2
This is a work in progress with D. Bonheure and C. Troestler.

We have:
- For $p > 1 + \lambda_2$, ± 1 is not ground state.
- Radial bifurcations when p crosses $1 + \lambda_i$.
- last result...

Tools: bifurcations theory for ODEs (Krasnoselskii-Boehme-Marino, Ambrosetti-Prodi,...)

Improvements: it is working for diffusion equations...

Open questions:
- Is bifurcation sequence given for $p = 1 + \lambda_2$ a ground state solutions branch?
Numerical experiments

By using Mountain-Pass algorithm:

Figure: \(-\Delta u + u = |u|^{\lambda_2-1+0.1} u\), with \(\lambda_2 = 2 + \frac{\pi^2}{4}\)

\[
\begin{array}{c|c}
\mathcal{E}(u) & \mathcal{E}(1) \\
0.98 & 1.0 \\
\end{array}
\]
What for non-zero V? $(-\Delta u + V(x)u = \lambda |u|^{p-2}u)$

Proposition (G., noDEA)

$-\Delta + V(x)$ positive definite \rightarrow okay

Otherwise, no Mountain-Pass structure \rightarrow other Nehari manifold (see A. Szulkin, T. Weth, ’09)

$$\mathcal{N}_p := \{u \in H^1_0 \setminus H^- : \mathcal{E}_p'(u)v = 0, v \in \{u\} \cup H^-\},$$

where H^- is the negative spectrum of $-\Delta + V(x)$.

Remark: only existence of ground state solutions is proved.

Work with C. Troestler: convergence of an algorithm (type MPA) to approach non-zero solution of this problem.
Symmetries \((-\lambda_2 < V(x) = \lambda < -\lambda_1)\)

Question: What for symmetries of ground state solution in this case?

Conjecture: It seems to keep symmetries of its projection in the first eigenspace with positive eigenvalue.
Future:

- Computer assisted proofs: McKenna + explanations...
- Fourth order equations:
- Squassina:
le chat + merci...