Novel manganese complexes based on a pyclen derivative: synthesis and relaxometric characterization

[Authors and affiliations]

1. Introduction

In medicine, medical imaging has a leading place in the diagnosis setting. This is why some researches are continually carried out to improve the available techniques. One of the most used techniques to obtain anatomical information is magnetic resonance imaging (MRI). Although it is a highly resolutive technique, it has a low sensitivity that can be relieved by a contrast agent. However, the commercially available contrast agents are based on gadolinium complexes which can lead to nephrogenic systemic fibrosis. That is why the synthesis of new complexes based on another cation, such as manganese (Mn²⁺), is interesting. Manganese ions are indeed potentially less toxic since they are naturally present in the body. This study shows the synthetic way to obtain 2 different pyclen derivatives complexed with Mn²⁺ ions and their relaxometric studies to prove their efficiency. Further improvement will consist in the relaxometric study of the macrocyclic complexes encapsulated in polymer nano-vesicles also called "polymersomes" made of pH-sensitive polyester.

2. Methods

Scheme of the synthetic pathway to obtain the two final complexes:

MnPy((COO)₂)₃-H
MnPy-((COO)₂)₃-OCH₂COO

Nanoprecipitation of copolymer to prepare polymersomes:

PEO-b-PCL14
Mn= 18000 g/mol

To fit correctly the NMRD profiles, the number of inner-sphere coordinated water molecules (q) was evaluated by ¹H NMR and with NMRD profiles at 25°C. A number of q=1 is obtained for both complexes. As shown by the NMRD profiles, the relaxivity of MnPy((COO)₂)₃-H-OCH₂COO is higher than that of MnPy((COO)₂)₃-H, mainly due to an increase of τ₁.

Table 1: Determination of the number of coordinated water molecules in the metal inner-sphere (q) and characteristic relaxometric times of the two complexes extracted from the NMRD profiles

<table>
<thead>
<tr>
<th>Complex</th>
<th>q (by ¹H NMR)</th>
<th>q (by NMRD profiles at 25°C)</th>
<th>τ₁ (µs)</th>
<th>τ₂ (µs)</th>
<th>τ₁ (µs)</th>
<th>τ₂ (µs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MnPy((COO)₂)₃-H</td>
<td>0.72</td>
<td>1.02</td>
<td>31.30</td>
<td>0.10</td>
<td>3.11</td>
<td>340</td>
</tr>
<tr>
<td>MnPy((COO)₂)₃-OCH₂COO</td>
<td>0.73</td>
<td>1.32</td>
<td>56.30</td>
<td>0.10</td>
<td>56</td>
<td>480</td>
</tr>
</tbody>
</table>

Dynamic light scattering (DLS):

Dₐ = 136 nm, PDI = 0.1
Concentration in copolymer = 0.08 mM (1.5 mg/mL)

Preliminary DLS analysis of the nano-precipitated samples without any Mn-complexes shows narrow size dispersity and average hydrodynamic size compatible with nanostructure obtained with similar PEO-b-PCL copolymer.

3. Results

4. Conclusion and perspective

This study shows that these manganese-pyclen derivatives are promising contrast agents to replace gadolinium complexes as T₁ MRI contrast agent. Moreover, different functions can be combined by conjugation with different other types of molecules to obtain a functionalized pyclen that can be encapsulated in polymersomes.

5. Acknowledgements

This work was performed with the financial support of SIRIC BRIO (COMMUNCAN), FNRS, ARC, the Walloon Region (Gadolymph, Holocaust and Interreg projects), the Interuniversity Attraction Poles of the Belgian Federal Science Policy Office and the COST actions. Authors thank the Center for Microscopy and Molecular Imaging (CMMI, supported by European Regional Development Fund and Wallonia).