Simplified modelling of cracks

Jérôme NOËL
jerome.noel@umons.ac.be
53, rue du Joncquois
B-7000 Mons
+3265374530
Introduction

Research topics

- Structural analyses on patrimonial buildings by using ABAQUS.
- Those buildings often suffer from pathologies:
 - Soil instabilities (settlements, etc.)
 - Structural elements failure (cracks)
- The structures are highly redundant and it is interesting to have an overview of the stress redistribution due to the introduction of cracks.

- That’s why a simplified tool for automatically introducing discrete cracking phenomena in the models was developed (coupling MatLab/ABAQUS).
- This tool is intended for engineering offices and is therefore simplified in order to be more easily and efficiently used.
Introduction

Discrete cracking

- The introduction of a discrete crack consists in creating a crack as a geometrical discontinuity.

- In opposition to a smeared cracking phenomenon for which the crack is simulated through a local modification of the material mechanical properties (reduction of the Young modulus).
We essentially studied masonry buildings and we have made some approximations about the material: elastic, isotropic material with a tensile strength σ_{max} and an infinite compression strength.

A Rankine criterion is used for determining the location of the failure of the material. This criterion compares the maximal principal stress (SP3) in the model to the tensile strength of the material σ_{max}. The vector representing the maximal principal stress gives us the orientation of the crack plane.
Coupling
MatLab/ABAQUS

Discrete cracking

- As we are dependant on the morphology of the mesh, a fictitious crack plane is chosen as close as possible to the real one.
- If $SP3 \geq \sigma_{max}$, then introduction of a crack.
- When there is no more stresses higher than the tensile strength, the program stops.
INTRODUCTION
- RESEARCH TOPICS
- DISCRETE CRACKING

COUPLING MatLab/ABAQUS
- DUPLICATION OF THE NODE
- CASE STUDIES
- 3D BEAMS
- MAGDALENE CHURCH
- OUR-LADY CATHEDRAL
- POSSIBLE IMPROVEMENTS

Computing the first model without cracks

Storage of the stresses, nodes, elements,...

Detection of the node with the highest maximal principal stress

SP3 > \(\sigma_{\text{max}} \)?

Yes

Storage of the coordinates of the node with the highest stress

Storage of the node composing the elements containing the previous node

Computation of the vector representing the maximal principal stress

Choice of the fictitious crack plane closest to the previously determined one

Duplication of the node in order to create the crack

Re writing of the input file

MatLab launches ABAQUS for computing the cracked model

No

No (more) cracks detected
INTRODUCTION

- Research Topics
- Discrete Cracking

COUPLING MatLab/ABAQUS

- Duplication of the node

CASE STUDIES

- 3D Beams
- Magdalene Church
- Our-Lady Cathedral

POSSIBLE IMPROVEMENTS

Coupling MatLab/ABAQUS

Duplication of the node

- **Initial node**
- **Initial elements**
- **“Face” upon which the maximal principal stress is applied**
- **Fictitious crack plane chosen**
- **Fictitious crack plane rejected**
- **New node and elements of the cracked model**

Université de Mons
Jérôme NOËL | Faculté Polytechnique - Service de Génie Civil et Mécanique des Structures
INTRODUCTION
- RESEARCH TOPICS
- DISCRETE CRACKING

COUPLING MatLab/ABAQUS
- DUPLICATION OF THE NODE

CASE STUDIES
- 3D BEAMS
- MAGDALENE CHURCH
- OUR-LADY CATHEDRAL

POSSIBLE IMPROVEMENTS
Coupling MatLab/ABAQUS

Process

- The first (uncracked) model must be created under ABAQUS/CAE for introducing the geometry, the material, the loads, the boundary conditions and the mesh.
- MatLab is used for analysing the results provided by ABAQUS. It detects the location of the crack and models it by duplicating nodes.
- Then for managing the cracked models, MatLab launches automatically ABAQUS for calculating the stresses.
INTRODUCTION
- Research Topics
- Discrete Cracking
- Coupling MatLab/ABAQUS
- Duplication of the node

CASE STUDIES
- 3D Beams
- Magdalene Church
- Our-Lady Cathedral

POSSIBLE IMPROVEMENTS

Case Studies

3D Beams (only flexion)
Case Studies

3D Beams (Flexion and compression)

INTRODUCTION
- Research topics
- Discrete cracking
- Coupling MatLab/ABAQUS
- Duplication of the node

CASE STUDIES
- 3D Beams
- Magdalene Church
- Our-Lady C

Possible improvements

Jérôme NOËL | Faculté Polytechnique - Service de Génie Civil et Mécanique des Structures
Case Studies

Magdalene Church (Tournai, BE)
INTRODUCTION

- Research topics
- Discrete cracking

COUPLING MatLab/ABAQUS

- Duplication of the node

CASE STUDIES

- 3D Beams
- Magdalene Church
- Our-Lady Cathedral

POSSIBLE IMPROVEMENTS

Case Studies

Magdalene Church (Tournai, BE)

Highest Stresses

Cracks Introduced

MatLab/ABAQUS
Case Studies

Magdalene Church (Tournai, BE)

- Highest Stresses
- Cracks Introduced
- MatLab/ABAQUS

INTRODUCTION

- Research Topics
- Discrete Cracking
- Coupling MatLab/ABAQUS
- Duplication of the Node

CASE STUDIES

- 3D Beams
- Magdalene Church
- Our-Lady Cathedral
- Possible Improvements
Case Studies

Our-Lady Cathedral (Tournai, BE)
INTRODUCTION
- Research topics
- Discrete cracking
- Coupling MatLab/ABAQUS
- Duplication of the node

CASE STUDIES
- 3D Beams
- Magdalene Church
- Our-Lady Cathedral

POSSIBLE IMPROVEMENTS

Case Studies

Our-Lady Cathedral (Tournai, BE)

Cracks Introduced
Possible Improvements

- The tool developed here is a simple one which gives quite good qualitative results. It can, of course, be improved!
- With this tool, it is not possible to take into account the cracks due to shear stresses. This could be implemented in the MatLab routines.
- Another criterion (e.g. Mohr Coulomb) could be implemented for studying other materials.
- Cycle loads could be analysed if the contact between the faces of the cracks was introduced.
Thank you for your attention!