Minimizing the eccentric connectivity index with fixed number of pending vertices

G. Devillez1 P. Hauweele1 A. Hertz2 H. Mélot1

1Université de Mons, Service d’Algorithmique

2Polytechnique Montréal - GERAD

JGA 2019
We consider simple undirected graphs. Let v be a vertex of a graph G, recall that:

- **degree** $d_G(v)$ = number of adjacent vertices of v;

Example

![Graph diagram with vertices labeled and edges connecting them.](image)

G. Devillez

Minimizing ξ^c with p pending vertices

JGA 2019 1 / 20
We consider simple undirected graphs. Let v be a vertex of a graph G, recall that:

- **degree** $d_G(v) =$ number of adjacent vertices of v;
- **eccentricity** $\epsilon_G(v) =$ maximal distance between v and any other vertex.

Example

![Graph](image)

<table>
<thead>
<tr>
<th>Vertex</th>
<th>Degree</th>
<th>Eccentricity</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>b</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>d</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>e</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
Introduction

We consider simple undirected graphs. Let \(v \) be a vertex of a graph \(G \), recall that:

- **degree** \(d_G(v) \) = number of adjacent vertices of \(v \);
- **eccentricity** \(\epsilon_G(v) \) = maximal distance between \(v \) and any other vertex.

We also define \(w_G(v) = \epsilon_G(v)d_G(v) \).

Example

```
   a --- c --- e
   |     |     |
   3/2  4/1  1/2
   b --- d
   2/2
```

G. Devillez
Minimizing \(\xi^c \) with \(p \) pending vertices
JGA 2019
Introduction

For a graph $G = (V, E)$,

- its order $|V|$ is denoted by n;
- its number of pending vertices $P = |\{v \in V | d_G(v) = 1\}|$ is denoted by p.

\[\]
Eccentric Connectivity Index

Definition

The Eccentric Connectivity Index (ECI) of a graph G, denoted by $\xi^c(G)$, is

$$\xi^c(G) = \sum_{v \in V} d_G(v) e_G(v) = \sum_{v \in V} w_G(v).$$

Example

$$\xi^c(G) = 3 \times 4 + 2 + 6 = 20$$
Eccentric Connectivity Index

- Introduced by Sharma et al. in 1997 as a novel topological descriptor for molecules.
- Used in studies about anti-inflammatory properties, soil sorption of pesticides, anti-HIV activity of molecules,
- Not many extremal results about ξ^c.
- The first extremal results appears in 2010.
We want to solve the following problem:

Problem

Among all connected graphs with n vertices and p pending vertices, what are the graphs with minimum value of ξ^c?

Note: in this talk, we only consider graphs with $n > 3$ and $p < n - 2$.
The graphs $H_{n,p}$

Definition

We define $H_{n,p}$ as the graph with n vertices and p pending vertices obtained from a star on n vertices by adding a maximal matching between $n - p - 1$ pending vertices. If $n - p - 1$ is odd, we add an edge between one of the remaining pending vertices and a vertex covered by the matching.

Example

![Graphs $H_{7,3}$ and $H_{7,2}$](image)
The graphs $H_{n,p}$

We can compute $\xi^c(H_{n,p})$ using the following formulae:

- If $n - p - 1$ is even, $\xi^c(H_{n,p}) = 5n - 2p - 5$
- If $n - p - 1$ is odd, $\xi^c(H_{n,p}) = 5n - 2p - 3$

Note: this doesn’t work if $n = 4$ and $p = 0$ since $H_{4,0}$ has two dominant vertices. In this case, $\xi^c(H_{4,0}) > \xi^c(K_4)$.

\[\xi^c(H_{4,0}) = 14 \quad \text{and} \quad \xi^c(K_4) = 12 \]
One dominant vertex

At least a star on n vertices.
One dominant vertex

- At least a star on n vertices.
- We keep degrees as small as possible.
One dominant vertex

- At least a star on n vertices.
- We keep degrees as small as possible.
- We might need one additional edge.
One dominant vertex

- At least a star on n vertices.
- We keep degrees as small as possible.
- We might need one additional edge.
- This is $H_{n,p}$.
With more than one dominant vertex, no pending vertex.

Let G be such a graph:

$$\xi^c(G) \geq (n - 1)x + (n - x)2x = -2x^2 + x(3n - 1)$$

Minimized when $x = 2$ or $x = n$.

$x = 2$:

![Graph $S_{n,2}$](image)

$$\xi^c(G) \geq 6n - 10$$

$x = n$:

![Graph K_n](image)

$$\xi^c(G) \geq n^2 - n$$
No dominant vertex

- Let $G = (V, E)$ be a graph with no dominant vertex, can it be as good as a graph with at least one dominant vertex?

- We can show that $\exists u \in V$ such that $d_G(u) = \epsilon_G(u) = 2$

- Let v and w be the neighbors of u.

- We first suppose that v is adjacent to w.

- Let

 - $A = N(v) \setminus N(w) \setminus \{u, w\}$,
 - $C = N(w) \setminus N(v) \setminus \{u, v\}$,
 - $B = N(w) \cap N(v) \setminus \{u\}$,
 - $B' = \{x \in B | d_G(x) = 2\}$,
 - $B'' = B \setminus B'$.
v and w are adjacent

We obtain G' by applying the following transformation:

$$\begin{array}{c}
\text{A} & \text{B} & \text{C} \\
\text{v} & \text{w} & \\
\text{u} & \\
\end{array} \Rightarrow \begin{array}{c}
\text{A} & \text{B} & \text{C} \\
\text{v} & \text{w} & \\
\text{u} & \\
\end{array}$$
v and w are adjacent

We can show that

$$\sum_{z \in A \cup B \cup C \cup \{u\}} w_G(z) \geq \sum_{z \in A \cup B \cup C \cup \{u\}} w_{G'}(z)$$

Thus, to prove that G is not optimal, we have to show that

$$w_G(v) + w_G(w) - w_{G'}(v) - w_{G'}(w) = \alpha - \beta > 0$$
v and w are adjacent

- $w_G(v) = 2(|A| + |B| + 2)$
- $w_G(w) = 2(|B| + |C| + 2)$
- $\alpha = 2|A| + 4|B| + 2|C| + 8$
- $\alpha - \beta = |A| + 3|B| - 2|B'| + |C| + 2 = |A| + |B'| + 3|B''| + |C| + 2 > 0$
- Thus G is not optimal.
v and w are not adjacent

If $A \cup B^\prime$ and $C \cup B^\prime$ are not empty, we obtain G' by applying the following transformation:

$$\begin{align*}
A & \quad B^\prime & \quad B^\prime & \quad C \\
B & \quad v & \quad - & \quad w
\end{align*}$$

\Rightarrow

$$\begin{align*}
A & \quad B^\prime & \quad B^\prime & \quad C \\
B & \quad v & \quad w
\end{align*}$$
If \(A \cup B'' \) and \(C \cup B'' \) are not empty, we obtain \(G' \) by applying the following transformation:

![Diagram]

- Just like before, we only need to show that \(\alpha - \beta > 0 \).
- But, \(\alpha - \beta \geq |A| + |B'| + 3|B''| + |C| - 2 \geq 0 \)
When could G be optimal?

$$\alpha - \beta \geq |A| + |B'| + 3|B''| + |C| - 2$$
When could G be optimal?

$$\alpha - \beta \geq |A| + |B'| + 3 |B''| + |C| - 2$$

- The set B'' must be empty.
When could G be optimal?

\[\alpha - \beta \geq |A| + |B'| + 3|B''| + |C| - 2 \]

- The set B'' must be empty.
- B' must be empty too.
When could G be optimal?

\[\alpha - \beta \geq |A| + |B'| + 3|B''| + |C| - 2 \]

- The set B'' must be empty.
- B' must be empty too.
- $|A| = |C| = 1$
When could G be optimal?

$$\alpha - \beta \geq |A| + |B'| + 3|B''| + |C| - 2$$

- The set B'' must be empty.
- B' must be empty too.
- $|A| = |C| = 1$
- Two possible non-improving situations:

$$\xi^c(P_5) = 24 > \xi^c(H_{5,2}) = 16$$
When could G be optimal?

$$\alpha - \beta \geq |A| + |B'| + 3|B''| + |C| - 2$$

- The set B'' must be empty.
- B' must be empty too.
- $|A| = |C| = 1$
- Two possible non-improving situations:

\[\xi^c(C_5) = 20\]

\[\xi^c(K_5) = 20\]
u and v are not adjacent

$A \cup B''$ (or $C \cup B''$) is empty

- If B' is empty, C is not empty since $n > 3$ and $\exists r \in C$ s.t. $d_G(r) \geq 2$ since $p \leq n - 3$.
- We can then apply the following transformation to obtain G':
Changes in ξ^c

- $w_G(r) - w_{G'}(r) = 3d_G(r) - 2(d_G(r) + 1) = d_G(r) - 2$
- $\forall z \in C\setminus\{r\}, w_G(z) > w_{G'}(z)$
- There is at least one such vertex z such that $w_G(z) - w_{G'}(z) \geq 2$.
- Thus, $\xi^c(G) - \xi^c(G') \geq 2 - 1 + n - 3 + d_G(r) - 2 + 2 > 0$
 \[\geq 0\] \[\geq 0\]
- And G is not optimal.
u and v are not adjacent

$A \cup B''$ (or $C \cup B''$) is empty

- If B' is not empty, we transform G as follows:

\begin{align*}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\text{Before transformation:}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\text{After transformation:}
\end{array}
\end{array}
\end{array}
\end{array}
\end{align*}
Conditions for optimality

- Again, we need to show that $\alpha - \beta > 0$ and again,
 \[\alpha - \beta \geq 3|B'| + |C| - 4 \geq 0 \]

- For G to be optimal, we need $|B'| = 1$ and $|C| \leq 1$.
- In these situations, the bound is actually too low and G' is still better:
- $|C| = 0$:

![Diagram]

\begin{align*}
16 & > 14
\end{align*}
Conditions for optimality

- Again, we need to show that $\alpha - \beta > 0$ and again,
 \[\alpha - \beta \geq 3|B'| + |C| - 4 \geq 0 \]

- For G to be optimal, we need $|B'| = 1$ and $|C| \leq 1$.
- In these situations, the bound is actually too low and G' is still better:
 - $|C| = 1 :$

\[
\begin{array}{c}
\begin{array}{c}
|C| = 1 : \quad 23 > 20
\end{array}
\end{array}
\]
Conditions for optimality

- Again, we need to show that \(\alpha - \beta > 0 \) and again,
 \[
 \alpha - \beta \geq 3|B'| + |C| - 4 \geq 0
 \]
- For \(G \) to be optimal, we need \(|B'| = 1\) and \(|C| \leq 1\).
- In these situations, the bound is actually too low and \(G' \) is still better:
- \(|C| = 1:\)

\[
\begin{array}{c}
23 \\
\end{array} \quad > \quad \begin{array}{c}
20 \\
\end{array}
\]

- In this case, \(G \) is again not optimal.
Comparison of results

- When $p > 0$, we saw that only $H_{n,p}$ is optimal.
- When $p = 0$, we can compare the different candidates we found numerically via the formulae:
J. Zhang, Z. Liu, and B. Zhou.
On the maximal eccentric connectivity indices of graphs.

Vikas Sharma, Reena Goswami, and AK Madan.
Eccentric connectivity index: a novel highly discriminating topological descriptor for structure- property and structure- activity studies.

S Gupta, M Singh, and AK Madan.
Application of graph theory: Relationship of eccentric connectivity index and wiener’s index with anti-inflammatory activity.

The graphs $S_{n,2}$

Definition

We define $S_{n,2}$ as the graph with n vertices obtained from two adjacent vertices u and v by adding $n - 2$ new vertices only adjacent to u and v.

Example

![Diagram of $S_{4,2}$]
big values of p

- If $p = n - 1$, the graph can only be a star on n vertices.

Example

![Diagram of a star graph with n vertices]
big values of \(p \)

- If \(p = n - 2 \), the only possible graphs are obtained by adding \(n - 2 \) pending vertices randomly between the extremities of an edge with at least one pending vertex on each side.

Example

![Graphs with pending vertices](image.png)
big values of p

In the rest of this talk, we suppose $p \leq n - 3$. Note that if $n = 3$, we can only have $p = 0$ which is K_3.

We thus also suppose that $n \geq 4$.
No dominant vertex

- Let G be an extremal graph with no dominant vertex.
- Let $Q \subseteq V$ be the set of vertices of degree 2 and eccentricity 2.
- If $Q = \emptyset$, G is not extremal:
 - Every non-pending vertex v has $d_G(v) \geq 2$ and $\epsilon_G(v) \geq 2$. And $d_G(v) \geq 3$ or $\epsilon_G(v) \geq 3$.
 - Every pending vertex v has $\epsilon_G(v) \geq 3$.
- Thus,

$$\xi^c(G) \geq 6(n - p) + 3p \geq 5n - 2p + 3 > \xi^c(H_{n,p})$$

- And G is not extremal.
- Also true when $n = 4$ and $p = 0$.
$A \cup B''$ and $C \cup B''$ are not empty

\[w_G(v) \geq 2(|A| + |B| + 1) \]
\[w_G(w) \geq 2(|B| + |C| + 1) \]
\[\alpha \geq 2|A| + 4|B| + 2|C| + 4 \]
\[\alpha - \beta \geq |A| + 3|B| - 2|B'| + |C| + 2 = |A| + |B'| + 3|B''| + |C| - 2 \]
Changes in ξ^c

- $\forall z \in B' \cup C \cup \{u\}, w_G(z) \leq w_{G'}(z)$

- $w_G(v) \geq 2(|B'| + 1)$
- $w_G(w) = 2(|B'| + |C| + 1)$
- $\alpha \geq 4|B'| + 2|C| + 4$
- $\alpha - \beta \geq 3|B'| + |C| - 4$

- $w_{G'}(v) \leq 6$
- $w_{G'}(w) = |B'| + |C| + 2$
- $\beta \leq |B'| + |C| + 8$
Comparison of results

We have the following results:

- If $p > 0$, $H_{n,p}$ is the extremal graph.
- If $n = 4$ and $p = 0$, the extremal graph is K_4.
- If $n = 5$ and $p = 0$, there are four extremal graphs: K_5, $H_{5,0}$, C_5 and $S_{5,2}$.
- If $n = 6$ and $p = 0$, the extremal graph is $S_{n,2}$.
Bounds for connected graphs

<table>
<thead>
<tr>
<th>Invariant(s)</th>
<th>Lower bound</th>
<th>Upper bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>m (size)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>D (diameter)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>p (number of pending vertices)</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>δ (minimum degree)</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>D (diameter) and m (size)</td>
<td>✓ (with conditions on m and D)</td>
<td></td>
</tr>
<tr>
<td>D' (degree distance)</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>M_1 (Zagreb index) and m</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>W (Wiener index)</td>
<td>✗</td>
<td>✓</td>
</tr>
</tbody>
</table>
Bounds for trees

<table>
<thead>
<tr>
<th>Invariant(s)</th>
<th>Lower bound</th>
<th>Upper bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>_</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>D (diameter)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>r (radius)</td>
<td>X</td>
<td>✓</td>
</tr>
<tr>
<td>p (number of pending vertices)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Δ (maximum degree)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>β (matching number)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>α (stability number)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>W (Wiener index)</td>
<td>X</td>
<td>✓</td>
</tr>
</tbody>
</table>
Bounds for other graph classes

Unicyclic graphs

<table>
<thead>
<tr>
<th>Invariant(s)</th>
<th>Lower bound</th>
<th>Upper bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>g (girth)</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Bicyclic graphs

<table>
<thead>
<tr>
<th>Invariant(s)</th>
<th>Lower bound</th>
<th>Upper bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>✓</td>
<td>X</td>
</tr>
</tbody>
</table>

k-regular graphs

<table>
<thead>
<tr>
<th>Invariant(s)</th>
<th>Lower bound</th>
<th>Upper bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>k ≥ 3 fixed</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>