Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles

Sophie Laurent a, Silvio Dutzb,c, Urs O. Häfelib, Morteza Mahmoudid,e,⁎

a Department of General, Organic, and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriaux, 19, B-7000 Mons, Belgium
b Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada
c Department Nano Biophotonics, Institute of Photonic Technology, Jena, Germany
d National Cell Bank, Pasteur Institute of Iran, Tehran, Iran
e Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran

Abstract

Available online 30 April 2011

Keywords:
Superparamagnetic iron oxide nanoparticles
Physiochemical properties
Cancer
Hyperthermia
Theragnostics

Due to their unique magnetic properties, excellent biocompatibility as well as multi-purpose biomedical potential (e.g., applications in cancer therapy and general drug delivery), superparamagnetic iron oxide nanoparticles (SPIONs) are attracting increasing attention in both pharmaceutical and industrial communities. The precise control of the physiochemical properties of these magnetic systems is crucial for hyperthermia applications, as the induced heat is highly dependent on these properties. In this review, the limitations and recent advances in the development of superparamagnetic iron oxide nanoparticles for hyperthermia are presented.

© 2011 Elsevier B.V. All rights reserved.

Contents

1. Introduction ... 8
2. Physics of magnetism ... 9
3. Magnetic heating ...1 1
4. Heat dissipation mechanism ...1 3
5. Magnetic materials used for thermotherapy and their magnetic properties ..1 3
6. The importance of SPIONs for hyperthermia ..1 4
7. Effect of dopants on the enhancement of the hyperthermic properties of SPIONs . ..1 5
8. Temperature mapping in vivo ...1 5
9. Biocompatibility of SPIONS ..1 5
10. Determination of physiochemical properties of SPIONs ...1 5
11. Smart systems for multi-purpose bio-applications ..1 6
12. Examples of in vivo applications ...1 8
13. Conclusions and future perspectives ..1 9

1. Introduction

Magnetic nanoparticles (MNP) have found numerous applications in biomedicine, such as magnetic separation, drug delivery, magnetic resonance imaging (MRI), and hyperthermia [1–4]. Due to rapid advances in nanotechnology, novel synthetic routes to nanoparticles (NPs) with the ability to rigorously control the microstructure of the magnetic core (such as size monodispersity and crystallinity) have been described [5–9]. These nanosystems can be made to heat up, which leads to their use as hyperthermia agents, delivering toxic amounts of thermal energy to tumors, or as chemotherapy and radiotherapy enhancement agents, where a moderate degree of tissue warming results in more effective cell destruction [10]. The increasing interest for MNP is due to the discovery of their physical and chemical properties. In particular, it has been shown that the magnetic anisotropy of MNP can be much greater than those of a bulk specimen, while differences in the Curie or Néel temperatures, i.e., the temperatures of spontaneous parallel or antiparallel orientation of spins between MNP and the corresponding microscopic phases, reach hundreds of degrees [11]. In addition, magnetic nanomaterials have been found to possess a number of interesting properties such as giant magnetoresistance or abnormally high magnetocaloric effect.
Experimental investigations of the application of magnetic materials for hyperthermia date back to 1957 when Gilchrist et al. [12] heated various tissue samples with 20–100 nm size particles of γ-Fe$_2$O$_3$ exposed to a 1.2 MHz magnetic field. Since then, there have been numerous publications describing a variety of schemes using different types of magnetic materials, different field strengths and frequencies, and different methods of encapsulation and delivery of the particles [13].

The application of ferrofluids for hyperthermia treatment was investigated in the work of Chan et al. [14] and Jordan et al. [15] in 1993. These studies experimentally prove the high efficiency of a superparamagnetic crystal suspension to absorb the energy of an alternating magnetic field and convert it into heat. Given that tumor cells are more sensitive to a temperature increase than healthy ones [16,17], this property can be used in vivo to increase the temperature of tumor tissue and to destroy the pathological cells by hyperthermia.

Many efforts have been devoted in the last 20 years to improve hyperthermia techniques for clinical applications. Advances in the area of nanotechnology have contributed to the development of magnetic fluid hyperthermia. This technique is a promising technique for cancer treatment because of ease in targeting the cancerous tissue and hence having fewer side effects than chemotherapy and radiotherapy. It is notable that the results of current/ongoing clinical trials show significant reduction in side effects [18].

One of the early magnetic fluid papers for magnetic hyperthermia. They injected 100 mg dextran magnetite into the tail vein of Sprague–Dawley rats, treated with AC magnetic field (12 min, 450 kHz, unknown field and SAR), and saw tumor shrinkage and tissue necrosis. After this, they just published a few patents until 1988 [19]. Flow of embolized carbonyl iron particles under the influence of a magnetic field was evaluated in vitro and in vivo. The magnetic force caused particles to form aggregates, obstructing tubing or vascular beds. In dogs, 0.5 ml of iron particles injected into a renal artery under magnetic control may be helpful in embolic arterial occlusion and localized irradiation, hyperthermia and chemotherapy [20]. Rand et al. [21,22] introduced additional radiofrequency heating up to more than 55 °C on the renal surface of rabbits. In this way, total coagulation necrosis of a renal cancer model could be achieved, possibly more as a result of the hyperthermic treatment than caused by the occlusion. The treated animals survived the procedures and exposure in the magnetic field and to the ferromagnetic compounds without evidence of ill effects.

The first clinical patient trials [23] were started by the research group of Jordan [24–38]. They built a hyperthermia-generating prototype instrument which is able to generate variable magnetic fields in the range of 0–15 kA/m at a frequency of 100 kHz. At the same time, the machine allows for real time patient temperature measurements to ensure that neither the upper limit of the therapeutic temperature threshold is exceeded, thus preventing thermal ablation, nor the lower, ineffective limit is crossed. This prototype is capable of treating tumors placed in any region of the body (e.g., prostate cancer, brain tumors).

Currently, only local hyperthermia is considered for magnetic fluid hyperthermia. For this purpose, MNP in a carrier fluid are placed inside the tumor through direct injection or tumor specific antibody targeting, after which the tumor is exposed to an alternating magnetic field. This field makes the particles generate heat by magnetic relaxation mechanisms. For hyperthermia treatments knowing the temperature profile obtained in the tissues is of utmost importance. The ideal temperature profile is one where the body temperature in healthy tissue is maintained, while the therapeutic temperature of 45 °C inside the tumor is reached immediately and maintained constant. In reality these temperature profiles are not flat, neither in the tumor nor in normal tissue, because of thermal diffusion.

In this review, we will focus on the basic concepts of magnetism and review the physics of the hyperthermia process.

2. Physics of magnetism

When a magnetic material is placed in a magnetic field of strength H, the individual atomic moments in the material contribute to its overall response; the magnetic induction is given by Eq. (1):

$$B = \mu_0(H + M)$$

where μ_0 is the permeability in vacuum and M is the magnetic moment per volume. The magnetic materials may be conveniently classified in terms of their volumetric magnetic susceptibility, χ (with $M = \chi H$). Most materials display magnetism only in the presence of an applied field. They are classified as paramagnets, with χ in the range of 10^{-6}–10^{-1}, or diamagnets with a negative χ. However, some materials exhibit ordered magnetic states and are magnetic without requiring a magnetic field; these are classified as ferromagnets, and ferrimagnets [40]. The coupling interaction between magnetic moments within the material can give rise to large spontaneous magnetizations.

In 1930, Frenkel and Dorfman [41] showed on the basis of energy considerations that particles of a sufficiently small size should be single-domain. In the mid-20th century, the theory of single-domain particles started to be actively developed [42–45] and the related phenomena were studied experimentally [46–53]. These studies identified a substantial increase in the coercive force of a ferromagnet on passing from a multi-domain to the single-domain structure, which is important for the creation of permanent magnets. The calculated critical diameter (at room temperature) of a single-domain spherical particle with axial magnetic anisotropy varies in a broad range. The upper values are 128 nm for Fe$_3$O$_4$ and 166 nm for γ-Fe$_2$O$_3$ [54] and the lower values are around 80 nm for magnetite [55]. The latter data were confirmed experimentally for particles consisting of solid solutions of maghemite and magnetite [56]. Experimental determination of the critical diameter above which a single-domain particle becomes multi-domain is a complicated task, although it has recently become possible to observe this transition directly through a magnetic force microscope [57,58] or a quantum magnetic interferometer (m-SQUID) [59–61] or indirectly by means of the analysis of the magnetic properties.

The term ‘single-domain’ does not require a uniform magnetization throughout the whole particle bulk but only implies the absence of domain walls. The specific properties of MNP start to be manifested at sizes much smaller than the ‘single-domain limit’.

One more remarkable property of MNP, which allowed their experimental discovery in the mid–20th century, is their superparamagnetism. The model of an ideal superparamagnetic material was proposed in the early 1960s [62], but is still under development [63,64]. The simplest variant of this model considers a system of N non-interacting identical particles with the magnetic moment μ_0. Since the magnetic moment of the particle is assumed to be large, its interaction with the magnetic field H is calculated without taking into account the quantum effects. In the case of isotropic particles, the equilibrium magnetization of the $[M]$ system can be described by the Langevin equation (Eq. (2)):

$$\langle M \rangle = N\mu_0 \left[\text{csn} \left(\frac{\mu_0 M H}{k_B T} \right) - \frac{k_B T}{\mu_0 H} \right]$$

Eq. (2) has been derived with the assumption that single particles are magnetically isotropic, i.e., all directions of their magnetic moments are energetically equivalent, but this condition is hardly ever fulfilled. If the particles are magnetically anisotropic, the calculation of the equilibrium magnetization becomes more complicated. According to the nature of factors giving rise to the non-equivalence of the directions of magnetic moments, one can distinguish the magnetically crystalline anisotropy,
the shape anisotropy, anisotropy associated with the internal stress and external impact, and the exchange anisotropy [65].

For MNP, the surface magnetic anisotropy plays a special role. Unlike other kinds of magnetic anisotropy, surface anisotropy is proportional to the surface area of the particle rather than to its volume. Surface anisotropy appears due to the violation of the local environment’s symmetry and the change in the crystal’s field, which acts on magnetic ions located on the surface.

Uniaxial anisotropy is the simplest type of magnetic anisotropy. In general, the equation for the energy of uniaxial magnetic anisotropy is written as the sum of two contributions (Eq. (3)):

\[E(\theta) = (K_V + K_S) \sin^2 \theta \]

where \(K_V \) is the volume anisotropy constant, \(V \) is the particle’s volume, \(K_S \) is the surface anisotropy constant, \(S \) is the particle’s surface and \(\theta \) is the angle between the vector of the particle’s magnetic moment \(m \) and the anisotropy axis.

When the surface makes no contribution to the anisotropy, the angular dependence of the particle energy has the form given in Eq. (4):

\[E(\theta) = K_V \sin^2 \theta \]

If no external magnetic field or surface anisotropy is present, the minimum energy of the particle is attained at the orientation of the magnetic moment \(M \) along the easy magnetocrystalline anisotropy axis. In this case, two neighboring minima are separated by a barrier with height \(K_V V \). In an external magnetic field \(H \) applied at the angle \(\psi \) to the anisotropy axis, the particle’s energy is defined by Eq. (5):

\[E(\theta) = K_V V \sin^2 \theta - M_V V \cos(\theta - \psi) \]

Generally, in the presence of an external magnetic field, rotation of the particle’s magnetic moment to reach the orientation corresponding to a minimum energy, requires overcoming an energy barrier, \(\Delta E = K_V V \). The relation for the characteristic time of thermal fluctuations of the magnetic moment of a single-domain particle with uniaxial anisotropy provided that \(\Delta E/k_\text{B}T \geq 1 \) was obtained by Néel (Eq. (6)) [44]:

\[\tau = \tau_0 e^{(\Delta E/k_\text{B}T)} \]

Later, Eq. (6) was extended by Brown [45] to the cubic anisotropy case.

The pre-exponential factor \(\tau_0 \), is an expression of the anisotropy energy and depends on many parameters, including temperature, gyromagnetic ratios, saturation magnetization, anisotropy constants, the height of energy barrier, etc. [66–68]. However, for the sake of simplicity \(\tau_0 \) is often considered to be a constant in the range of \(10^{-9} \) to \(10^{-13} \) s [54]. Eq. (6) determines the characteristic time needed to establish the thermal equilibrium in a system of non-interacting single-domain magnetic particles. At higher temperatures, \(\Delta E/k_\text{B}T \ll 1 \), the time required for system transition into a state with the minimum energy is short compared to the characteristic time of measurements \(\tau_\text{meas} \) and the system is not expected to show a magnetic hysteresis. In the case of \(\Delta E/k_\text{B}T \gg 1 \), the system transition into an equilibrium state may take a very long time depending appreciably on the particle. If \(\tau_\text{meas} \gg \tau \), the system occurs in the superparamagnetic state and rapidly reaches an equilibrium magnetization on changing the temperature or the external field. With a \(\tau_\text{meas} \ll \tau \), however, after a change of the external magnetic field, the system does not arrive at a new equilibrium state over the time \(\tau_\text{meas} \) and its magnetization does not change. The case \(\tau = \tau_\text{meas} \) in Eq. (6) corresponds to the blocking temperature \(T_b \). If \(\tau_\text{meas} = 100 \text{ s} \) (characteristic time for the static magnetic measure-

[Fig. 1. Evolution of the magnetic energy with the tilt angle between the easy axis. Reproduced from Ref. [1].]

[Fig. 2. Illustration of the two components of the magnetic relaxation of a magnetic fluid.]
moment \(M \), two types of measurements are carried out; namely, zero-field cooling (ZFC) and field cooling (FC). According to the ZFC procedure, the sample is cooled (usually down to the liquid helium temperature) in the absence of a magnetic field and then a moderate measuring field is applied and the temperature is gradually raised, while the magnetic moment \(m_{ZFC} \) values are being recorded. The FC procedure differs from ZFC only by the fact that the sample is cooled in a non-zero magnetic field. For MNP, the \(M_{FC}(T) \) and \(M_{ZFC}(T) \) curves usually coincide at relatively high temperatures but start to differ below a certain temperature \(T_{ir} \) (irreversibility temperature). The \(M_{ZFC}(T) \) curve has a maximum at some temperature \(T_{max} \), and the \(M_{FC}(T) \) curve, most often, ascends monotonically to very low temperatures. The dependence of magnetization on the applied field at various temperatures is often measured as well [72]. Electron magnetic resonance and Mossbauer spectroscopy data are also used to analyze the magnetic properties.

3. Magnetic heating

The classical approach of hyperthermia consists of submitting the patient to electromagnetic waves of several hundred MHz frequencies. The thermoablation of a tumor can be achieved by an electromagnetic wave emitted by a RF electrode implanted in the pathological area. A less invasive method consists of irradiating the pathological area with an array of external resonant microwave dipolar emitters [73–75]. Preclinical and clinical data show that hyperthermia is feasible and effective in combination with radiation therapy. A study of 112 patients with glioblastoma multiformae showed that that median survival times jumped from 15% to 31% when \(\gamma \)-therapy was combined with hyperthermia as compared to \(\gamma \)-therapy alone [76]. One important contribution of the hyperthermia treatment is the increase of perfusion in the tumor tissue which also increases the local oxygen concentration and thus results in optimal conditions for the \(\gamma \)-radiation to destroy the tumor cells [77].

The National Cancer Institute (www.nci.nih.gov) recognizes three different types of hyperthermia treatments:

1. **Local hyperthermia**: the heat is applied to a small area, such as a tumor, using various techniques that deliver energy to heat the tumor. Different types of energy may be used to apply heat; including microwave, radiofrequency, and ultrasound. The tumor site has leaky vessels allowing the NPs to enter the tumor cell by the passive targeting approach according to the particles’ biophysiochemical properties. In order to increase the yield of hyperthermia, the surface of MNP is tagged by targeting molecules (i.e., active targeting) [78]. It is worth noting that there is no detectable effect on the targeting moieties (e.g., antibodies), due to the localized temperature (i.e., 42–45 °C) of the SPIONs used for hyperthermia applications [79]. The era of in vivo use of MNP for hyperthermia was initiated by Gordon et al. [80], who injected dextran coated-SPIONs intravenously into Sprague–Dawley rats and confirmed the creation of local heating in vivo.

2. **Regional hyperthermia**: large areas of tissue, such as a body cavity, organ, or limb are heated using different approaches such as external applicators or regional perfusion.

3. **Whole body hyperthermia**: is used to treat metastatic cancer that has spread throughout the body.

The modality of cancer treatment discussed in this review is a type of local hyperthermia which is called **magnetically mediated hyperthermia** or, more specifically, **magnetic fluid hyperthermia**.

Magnetic fluid hyperthermia involves dispersing magnetic particles throughout the target tissue and then applying an AC magnetic field of sufficient strength and frequency to cause the particles to heat by magnetic hysteresis losses or Néel relaxation [19,81]. Fig. 3 shows a photograph of high-frequency induction machine and its schematic representation.

Among all hyperthermia modalities including microwave, laser and ultrasonic wave-based treatments, magnetic fluid hyperthermia has the best potential to selectively target the tumor cells. It might thus be possible to reduce the chemo- and radiotherapy doses despite optimizing the therapeutic effect and reducing the toxic side effects from these therapeutic modalities.

The magnetic fluid carrying the MNP is delivered in one of four ways to the tumor:

1. **Arterial injection**: the fluid carrying the magnetic particles is injected in the arterial supply of the tumor and is used as the pathway to deliver them.

2. **Direct injection**: the fluid is injected directly into the tumor. The particles will be located in the tumor tissue and the most of them in the interstitial space and a minor part in blood vessels or intracellularly [13]. Thus, when the magnetic field is applied the heat originates mostly outside the cells. Furthermore, direct injection of MNP synthesized with a coating having specific tumor antibodies is also performed [83–85] so that they are selectively ingested by the tumor cells, with minimal uptake by normal cells (differential endocytosis). This will increase the NP’s retention in the tumor systems.
region, which is desirable as the hyperthermia treatments are often done repeatedly for optimal treatment success.

3. In situ implant formation: injectable in situ gelling formulations are used to form gels entrapping magnetic particles into a tumor [86].

4. Active targeting: a more complicated way to deliver these particles to the tumor tissue is the antibody targeting [87] as well as the particle enrichment in the tumor region by an external magnetic field gradient (magnetic targeting) [88]. For antibody targeting the MNPs are coated with a tumor specific antibody. After application of these MNPs into the blood vessels the particles find their way to the tumor and bind there the specifically targeted receptors. Similar is the procedure of magnetically guided application of MNPs. After application of the NP to the vessel an external field gradient close to the tumor tissue leads to a magnetic attraction acting on the MNPs circulating in the blood stream and to their magnetic concentration in the tumor tissue. Up to now, both just described methods of active targeting are not able to provide a sufficiently high absorber concentration in the tumor for hyperthermial treatment. To use active targeting for our purposes, the efficiency of delivery has to be increased or MNPs with higher specific heating power are needed.

Rosensweig [81] studied the mechanism of heat generation in a magnetic fluid due to a variable magnetic field and developed dissipation relationships based on the rotational relaxation of single-domain MNPs dispersed in a liquid matrix. These particles are assumed to be less than 20 nm in diameter, so eddy current heating can be neglected. Rosensweig found that there is a strong size dependence in the heating rate [81]. The size of the particle affects the time constant of each relaxation mechanism: the larger the particles are, the larger the Brownian and Néel relaxation time constant will be. The dominating contribution will be by the faster relaxation time (see Eq. (13)).

Since hyperthermia relies on the localized heating of tumor cells to between 42 and 45 °C, high homogeneous MNPs, in both size and shape, should be used [10]. In the above mentioned temperature, the normal cells would not be injured. In order to increase the safety of MNPs, their uptake by normal cells could be significantly decreased using functionalization approaches (e.g., coupling to antibodies) [15,16,78,87].

The main parameter determining the heating of the tissue is the specific absorption rate (SAR); defined as the rate at which electromagnetic energy is absorbed by a unit mass of a biological material. It is expressed in Watt per kilogram and is proportional to the rate of the temperature increase ($\Delta T/\Delta t$) (Eq. (8)) for the adiabatic case:

$$\text{SAR} = \frac{4.1868}{m_s} \frac{P}{C_e} \frac{dT}{dt}$$

where P is the electromagnetic wave power absorbed by the sample, m_s is the mass of the sample, and C_e is the specific heat capacity of the sample.

For classical high frequency irradiation by external antennas, the power deposition patterns lack selectivity. Another major difficulty in electromagnetic regional hyperthermia is the occurrence of local high temperatures (hot spots) because of the inhomogeneities of electrical permeability and conductivity of the tissue, which cause variation of the SAR [89,90].

A better control of the energy is obtained for an irradiation of the tissue doped by a ferrofluid at a low-frequency magnetic wave (100–400 kHz). For a given superparamagnetic material, the SAR is very precisely determined by the volume ratio of these crystals in the tissue. Rosensweig theoretically proved a strong relationship between the SAR of ferrofluids and its magnetic relaxation [16] (Eq. (9)):

$$\text{SAR} = \frac{4.1868}{m_0} \frac{\mu_0^2}{1000} \frac{c S V}{H_0^2} \frac{2\pi n \tau}{1 + (2\pi n \tau)^2}$$

where V is the volume fraction of superparamagnetic material, τ is the frequency of the oscillating magnetic field, H_0 is the magnetic field intensity, τ is the relaxation time. Other parameters are as defined earlier.

This expression (Eq. (9)) shows that the SAR in a uniform magnetic field only depends upon the nature and the volume fraction of the superparamagnetic particles. A very high spatial selectivity can therefore be achieved if the particles are only localized in the pathological area. The irradiation frequency should be sufficiently low to avoid an interaction of the electromagnetic field with the intracellular ions, since the eddy current induced by AC magnetic field in the body may cause some damages. The strength of the eddy currents and thus an unwanted temperature increase in unloaded healthy tissue depends on the electrical conductivity of the tissue, the area exposed to the magnetic field as well as frequency and amplitude of the alternating magnetic field. In experimental investigations on volunteers Brezovic [91] found a limit for the product of H and f to be 4.85×10^5 Am$^{-1}$ s$^{-1}$ for a coil diameter of 0.3 m within the test person were able to “withstand the treatment for more than 1 h without major discomfort”. For a different coil diameter (D) f and H can be changed in that manner that $f^2 H^2 D^2$ remains constant.

For small anisotropy and crystal size MNPs, the SAR is proportional to the relaxation time and is due to the dissipation caused by the magnetic viscosity. It is maximum if $f^2 H^2 D^2$ is verified.

$$\tau = \frac{1}{2\pi n^2}$$

(10)

For a τ longer than this optimal value, the SAR decreases very quickly because the magnetic relaxation is too slow to allow for the superparamagnetic crystal “to follow” the oscillating magnetic field. Rosensweig [81] has shown a very sharp maximum of the SAR for a diameter of about 14 nm in the case of magnetite. He has also proven that an increase of the size distribution caused a very fast decrease of the SAR. In his calculation, Rosensweig only took into account the bulk magnetocrystalline component of the anisotropy, but an evolution of the stage of aggregation of the particle should also cause a modification of the SAR because of the effect of dipolar intercrystal coupling on Néel relaxation times. This approach for localized thermotherapy induced by a magnetic fluid is already suitable for both hyperthermia and thermoablation. Evaluation of the feasibility and survival benefit of this new hyperthermia approach is in progress on animals, and clinical trials are underway [13,37–39].

The sizes of particles that could dissipate heat through Néel and Brownian relaxations of the magnetic moment have been estimated theoretically [81]. The influence of the size distribution on reversal losses is discussed theoretically mainly for ferromagnetic NP but also for particles in the transition range to superparamagnetic behavior [92]. However, the relative contribution of heat from both relaxations in materials considered for magnetic heat dissipation studies and the concept regarding the relaxation loss phenomenon suitable for practical application have not been investigated in detail but theoretical estimations show that suitable effects by Néel relaxation are only expected for optimally chosen parameters in terms of particle size, field amplitude, and frequency [93]. Fortin et al. [94] believe that the consistency between in vitro and in vivo trials is vital for the success of magnetic hyperthermia using nanosized particles. Since the heat dissipated by Brownian relaxation greatly depends on the local environment (such as viscosity of the medium), the use of magnetic particles that dissipate heat through Néel relaxation (which is not influenced by the local environment) is preferred in clinical trials. The above phenomenon has been verified recently with in vitro experiments [94] and the importance of a detailed analysis of the relative contribution for effective therapy has been stressed more than ever before.
Another factor that retards the progress of magnetic hyperthermia is related to the expression used to denote the potential of the thermal seeds. There have been several reports on heat dissipation of magnetite particles exposed to various magnetic field strengths and frequencies [16,95–98], and a SAR value as high as 960 W g⁻¹ has been reported at 410 kHz and field amplitude 10 kA/m in magnetosomes [99]. However, it should be noted that the present practice of reporting the SAR values in W g⁻¹ does not fully express the true potential of thermal seeds because heat dissipation is proportional to the frequency and square of the magnetic field strength used during the measurements. Thus, it is difficult to arrive at any conclusion regarding the physical properties of magnetite suitable for effective hyperthermia, unless the magnitudes of magnetic field strength and frequency are considered. In spite of the above problems, researchers have gone another step forward in treating human patients with brain and prostate cancer using a magnetic fluid suspension dispersing magnetite [25,35]. It should be noted that for effective magnetic fluid hyperthermia (MFH) treatment, it is vital to continue research in the fields of (i) synthesis of monodispersed magnetic particles, (ii) heat dissipation characteristics of magnetite particles, and (iii) heat diffusion characteristics, so that the concentration of thermal seeds necessary to elevate the temperature above 43 °C and the temperature distribution in the tumor vicinity can be optimized.

4. Heat dissipation mechanism

Heat dissipation from magnetic particles is caused by the delay in the relaxation of the magnetic moment through either the rotation within the particle (Néel) or the rotation of the particle itself (Brownian), when they are exposed to an AC magnetic field with magnetic field reversal times shorter than the magnetic relaxation times of the particles. The Néel (τ_N) and Brownian (τ_B) magnetic relaxation times of a particle are given by the following equations (Eqs. (11)–(13)):

\[\tau_N = \tau_{K_B} \frac{V_M}{M} \]
\[\tau_B = \frac{3\eta V_H}{kT} \]
\[\tau = \frac{\tau_{BN}}{\tau_B + \tau_N} \]

where \(\tau_N \) is the Néel relaxation time, \(\tau_B \) the Brown relaxation time, \(\tau \) the effective relaxation time if both effects occur at the same time, \(\tau_0 = 10^{-9} \) s, \(k \) the anisotropy constant, \(V_M \) the volume of particle, \(\kappa \) the Boltzmann constant, \(T \) the temperature, \(\eta \) the viscosity, and \(V_H \) the hydrodynamic volume of particle.

From the above equations, it is clear that the relaxation time relies on the particle diameter. When the particles are exposed to an AC magnetic field with time of magnetic reversals less than the magnetic relaxation times of particles, heat is dissipated due to the delay in the relaxation of the magnetic moment. Thus, the heat dissipation value is calculated using the harmonic average of both relaxations and their relative contributions depending on the particle diameter. The heat dissipation is given by the following equation (Eq. (14)):

\[P = \mu_0 \chi'' H^2 \]

where \(P \) is the heat dissipation value, \(\mu_0 \) the magnetic field constant, \(\chi'' \) the AC magnetic susceptibility (imaginary part), \(H \) the frequency of the applied AC magnetic field, and \(M \) the strength of the applied AC magnetic field.

A theoretical estimation of the SAR values as a function of particle diameter (up to the superparamagnetic size limit) can be calculated using Eq. (14). The heat dissipated through Néel relaxation is not influenced by the viscosity of the medium; whereas, the Brownian relaxation is greatly influenced. For example, if the viscosity of the medium is high or if the freedom of particle rotation is suppressed, the heat dissipated by these particles will either diminish or cease. Thus, to obtain similar SAR values in in vitro and in vivo experiments; it is essential to have particles that relax through Néel relaxation. Therefore, it is always necessary to determine the relative contribution of heat from Néel and Brownian relaxation losses to estimate the possible minimum and maximum heat that could be generated in in vivo experiments.

An attempt has been made to determine the relative contribution from magnetite samples of two different suspensions with average diameters of 12.5 and 15.7 nm. Heating characteristics depended on the dispersion states of particles. The specific absorption rates (SAR) dropped by 27% for the 12.5 nm particles to 16.8×10⁻⁹ W g⁻¹ Oe⁻¹ Hz⁻¹ and by 67% for the 15.7 nm particles to 9.69×10⁻⁹ W g⁻¹ Oe⁻¹ Hz⁻¹, when the particle rotation was suppressed by dispersing MNP in hydrogel [100].

SPIONs can produce heat by the loss mechanism which is obtained from the rotation of magnetic moments in overcoming the energy barrier. Energy is generated by the relaxation of the MNPs moment to its equilibrium orientation (i.e., Néel relaxation) [101]. Per definition hysteresis is zero for superparamagnetic materials. But in real SPIONs ensembles, a hysteresis loop with a negligible remanence and coercivity occurs [102] probably due to some large particles and agglomerates in the ensemble.

In addition to SPIONs, particles that show hysteresis might also be interesting for hyperthermia [101]. These particles can be ferrimagnetic (larger single cores above the superparamagnetic size limit) [103] or superferromagnetic (clusters of superparamagnetic cores which show ferromagnetic behavior due to magnetic interactions of the single cores) [104]. When assuming a relative strong immobilization of these larger particles (15 to 25 nm for the ferrimagnetic MNPs, up to 100 nm for the superferromagnetic cluster) in the tumor tissue after application [105] a reversal of the magnetization is possible neither by Néel nor Brown relaxation. By applying an alternating field with amplitude of more than 2 times of the coercivity of the particles the hysteresis will be overcome and the flipping of the magnetization in the particles leads to heating of the particles. Typical values for SAR for this magnetic hysteresis heating are in the range from 100 to 800 W/g.

Superparamagnetic MNPs show medium heating efficiency, but it can be enhanced by increasing their sizes [106]. It is worth noting that heating efficiency is crucial for clinical purposes, given that it makes it possible to minimize the patient’s complaints (e.g., the injected dosage is decreased by enhancing the produced heat per NP) [101]. Furthermore the heating efficiency of the MNPs is crucial for the size of tumors which can be heated up. Due to the higher surface-to-volume ratio of smaller tumors a stronger heat dissipation to the surrounding tissue takes place [19,107]. This means that for very small tumors a high specific absorption rate or a high concentration of absorbing material in the tissue is needed. For the direct injection a concentration of 10 to 100 mg particles per cm³ [3] of tumor tissue is realistic. Thus, for the treatment of single cells or cell clusters it seems unrealistic to reach a sufficient temperature increase with the available groups of MNPs and the achievable MNPs concentrations (see Fig. 4) [108].

5. Magnetic materials used for thermotherapy and their magnetic properties

There are several magnetic nanomaterials that have been used in hyperthermia applications including SPIONs (Fe₃O₄ and γ-Fe₂O₃), iron–palladium and cobalt, ferrimagnetic spinels, cobalt ferrite, Mn–Zn and Mn–Zn–Gd ferrite particles, copper–nickel, ferromagnetic perovskites La₁₋ₓSrₓMnO₃, Ni₁₋ₓCrₓ, gadolinium-, calcium-, and
lanthanum complexes, and ferrimagnetic SrFe$_{12}$O$_{19}$/γ-Fe$_2$O$_3$ composites [145,109–119].

There is another novel method/idea to control the heating between 42 and 45 °C (hyperthermia) or over 46 °C (thermo-ablation) that damages cells irreversibly. In this method, a new class of magnetic materials (e.g., Mn–Zn–Fe, Co–Gd–Zn, and Zn–Gd–Fe composites) has a Curie temperature (i.e., the temperature above which the ferromagnetic materials lose their strongly magnetic properties and become paramagnetic) which is just above the therapeutic temperature. The heating would then decreased considerably once the desired therapeutic temperature is exceeded, and no charring of the tissue would be possible. First such materials were described in 1999 [115,120] and the useful temperatures have slowly been coming down [121,122]. Most recently, Settecase et al. [123] prepared MNP with a Curie temperature of 42–43 °C and employed the MNP as selective heating source for a tumor site exposed to an alternating magnetic field.

By modifying their synthesis parameters (e.g., doping of the guest atom in the structure [124]), and their physicochemical properties (e.g., composition, structure, shape and its distribution), the magnetic properties of MNP could be significantly changed. For instance, the structure of ferrimagnetic NPs (e.g., Co$_{x}$Fe$_{1−x}$tetrahedral site γ-Fe$_2$O$_3$; 0.07 ≤ x ≤ 0.2) and consequently their magnetic properties (e.g., magnetic saturation and magnetocrystalline anisotropy constant) could be changed by variation of quenching speeds and magnetic fields. Such systems can, therefore, be used for the development of magnetic materials that can be adapted to different applications. In particular, SPIONs have been extensively studied for use in magnetic hyperthermia, and tissue repair without any detectable cytotoxicity at the applied dosage [113–139].

The cytotoxicity of SPIONs, at concentrations of several hundred times of the applied dosage, has been tested via various methods such as the cell-life cycle assay, MTT assay, comet assay, TUNEL assay (i.e., apoptosis detection). No considerable toxicity was found [78,102,127,130–137,139–141], whereas other magnetic particles have shown considerable toxicity in the same dosage [141–144]. One type of SPIONs for imaging applications has been approved by the FDA and is already on the market [145].

Superparamagnetic MNP are preferred in in vivo applications, as the magnetization disappears once the external magnetic field is removed. It is notable that superparamagnetism is a phenomenon which is observed in ferromagnetic nanoparticles below a critical size to form single domain particles. The main characteristic of this form of magnetism is that these particles do not show any magnetization in the absence of a magnetic field. Particle agglomeration, and hence the

6. The importance of SPIONs for hyperthermia

Although SPIONs exhibit a medium heating efficiency with minimal control of in vivo temperature evolution during hyperthermia in comparison with other magnetic materials [101], it is surprising to note that most of both experimental and commercially available MNP for hyperthermia applications consist of SPION cores rather than other mentioned MNP (see www.magforce.de and www.sennewald.de, the most eminent companies in hyperthermia). The reason is that the MNP must have many characteristics to qualify for biomedical applications such as biocompatibility, nontoxicity, ability to escape from the reticuloendothelial system (RES), and low protein adsorption [127,128]. In addition, the integrative therapeutic and diagnostic (i.e., theragnostic) capacity is of crucial importance in nanomedicine in order to reduce side effects in patients [78,129]. Due to their capability to be functionalized and guided by a magnetic field, and their biocompatibility and theragnostic potential, SPIONs represent a cutting-edge tool for nanomedicine (the most popular systems are presented in Table 1) [1,102,130–135]. SPIONs can simultaneously satisfy many biomedical needs and are for this reason used in magnetic resonance imaging, guided drug/biomolecules delivery, magnetic hyperthermia, and tissue repair without any detectable cytotoxicity at the applied dosage [113–139].

<table>
<thead>
<tr>
<th>Common Types of MNP</th>
<th>Specific Heating Power [W/g]</th>
<th>Absorber Concentration [mg/cm³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNP</td>
<td>10M</td>
<td>100M</td>
</tr>
<tr>
<td>Core–shell system</td>
<td>Several human carcinoma cell lines.</td>
<td>Passive targeting system commonly used for local treatment with low targeting capability.</td>
</tr>
<tr>
<td>Magnetoliposomes; encapsulated SPIONs in the liposomal shell</td>
<td>Rat glioma cells; T-9 rat glioma; B16 mouse melanoma; Os515 hamster osteosarcoma; VX-7 squamous cell carcinoma in rabbit tongue; mouse renal cell carcinoma</td>
<td>The blood circulation time has been increased in comparison with SPIONs themselves.</td>
</tr>
<tr>
<td>Magnetic microspheres/microcapsules</td>
<td>Several in vivo investigations</td>
<td>The blood circulation time is increased; the system has the potential to be used in theragnostic applications (hyperthermia, imaging, and drug delivery).</td>
</tr>
</tbody>
</table>

Fig. 4. Specific loss power needed for hyperthermia ($\Delta T = 5$ K) in dependence on particle concentration achieved in tumor tissue. Given are curves for metastases of 3 mm diameter, a cell cluster (0.1 mm) and a single cell (15 μm).

Table 1

<table>
<thead>
<tr>
<th>Most popular magnetic particle systems in hyperthermia.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of system</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>Core–shell system</td>
</tr>
<tr>
<td>Magnetoliposomes; encapsulated SPIONs in the liposomal shell</td>
</tr>
<tr>
<td>Magnetic microspheres/microcapsules</td>
</tr>
</tbody>
</table>
possible embolization of the capillary vessels, can thus be avoided [2,146]. Although the hysteresis loop of ferrimagnetic and ferromagnetic NPs is advantageous for hyperthermia, its existence might induce embolization of the capillary vessels due to the formation of agglomerates, which limits their in vivo use. It is worth mentioning that the heat induction in SPIONS can be enhanced by the creation of magnetic microspheres which consist of a polymer matrix randomly filled with MNP [102,133]. This enhancement of the local heating of SPIONS in magnetic microspheres may relate to the magneto-crystalline anisotropy [133]. Since the SPIONS in the microspheres cannot move to their easy axes directions, the inserted energy is transferred into heat.

7. Effect of dopants on the enhancement of the hyperthermic properties of SPIONS

By enhancing the magnetic characteristics, the hyperthermia output of SPIONS can be significantly increased [169]. There are several ways for improving the magnetic properties of MNP, such as the unidirectional growth of MNP [140], metal dopant substitution strategy of metal ferrite NPs [170,171], and the formation of colloidal nano-crystal clusters [172,173]. Among the mentioned methods, using a metal dopant such as Zn and Gd in SPIONS has shown a better enhancement of magnetic properties [140,174–176].

An example for metal dopant substitution therapy is the use of Gd-doped SPIONS (Gd0.002Fe2.98O4) which were prepared by Drake et al. The specific power absorption rate was about 4 times higher than the one of identically sized SPIONS [176]. The obtained doped-SPIONS were employed in mouse for in vivo tumor thermo-therapy and the results confirmed their ability to inhibit tumor growth in comparison with standard SPIONS. One technical problem with metal-doped MNP, however, is the difficulty of producing them in a reliable and reproducible fashion [177], Jang et al. [169] achieved the dopant’s proper positioning in tetrahedral sites as well as the scale up capability. In addition, their doped-SPIONS showed very high saturation magnetization (175 emu/g) and the largest MRI contrast effects in comparison with the other available contrast agents. According to the results, the doped-SPIONS have an eight- to fourteen-fold increase in MRI contrast and a fourfold enhancement in hyperthermic effects compared to the conventional SPIONS (see Fig. 5) [169].

8. Temperature mapping in vivo

In order to optimize the treatment procedure while at the same time minimizing the effects of hyperthermia treatment to normal cells/tissues, temperature mapping at the treatment site is recognized as crucial. Modern methods of temperature mapping include the use of magnetically insensitive fiber-optic probes at a variable magnetic field [178], thermochromic fluorescent- and optical-films [179], MRI thermometry [180], imaging by superconducting quantum interference sensors [181], and molecular diffusion by functional-MRI [182]. In addition, a better understanding of hyperthermia and its heat distribution in vivo is achieved by hybrid thermal mapping of tumors using the combination of for example optical and MR imaging, and CT [114].

Recently, the Magforce Company introduced a very useful, precise and functional software platform therapy planning system (with the commercial name of NanoPlan®), which is a new thermal solver with the assessment of the risks in the stage of the treatment area for a desired magnetic field strength [35,38]. The modeling data agreed very well with the experimentally obtained measurements. Another company, Dr. Sennewald Medizintechnik GmbH, has developed a similar software, SigmaHyperPlan® [183].

A clinical trial that employed NanoPlan® for in vivo temperature mapping, temperature distribution calculations and visualizations in the treatment area in relation to H (magnetic field) and the underlying SPION distribution (see Fig. 6) was performed by Wust et al. [38]. They used aminosilane coated-SPIONS (prepared by MagForce Nanotechnologies AG, Berlin, Germany) on twenty-two patients with non-resectable and pre-treated solitary tumors. The coated-SPIONS, with an average core-size of 15 nm, were dispersed in water with an iron concentration of 112 mg/mL. By employing the tolerable H-field-strengths of 3.0–6.0 kA/m in the pelvis, up to 7.5 kA/m in the thoracic and neck region, and >10.0 kA/m for the head, SAR values of 60–380 W/kg in the target were obtained leading to a 40 °C heat-coverage of 86%. According to the results of the actual nanoparticle distribution and derived temperatures, the authors claimed that a moderate increase of the H-field, by even just 2 kA/m, would significantly improve the 42 °C coverage towards 100% [38].

9. Biocompatibility of SPIONS

Given their novel physiochemical properties, there are great hopes for the development of new theragnostic possibilities in medicine based on SPIONS. However, in order to be used for safe and high yield biomedical applications, SPIONS must be coated by materials that satisfy the following requirements: (i) preventing the opsonization of SPIONS, which leads to the fast removal of the particles from the blood stream by the RES; (ii) avoiding agglomeration of SPIONS in biological medium; (iii) achieving the desired surface charge for the SPIONS’ main task; (iv) preserving the functionalities of the nanomaterials; (v) exhibiting the protein absorption on the SPIONS’ surface and their corresponding denaturation; and (vi) ensuring the biocompatibility of the SPIONS [78,127,130,138]. In order to achieve these requirements, several organic and inorganic coatings have been employed on the surface of SPIONS. These coatings include polyethylene glycol [184], polyethylene glycol fumarate [133], polyvinyl alcohol [132], acrylate-based coatings [164,185], polysaccharide-based coatings [166,186], synthetic polymers [187,188], alginate [189], chitosan and polylethyl- lenimine [190–194], gold [195], and silica [196]. Cytotoxicity of the bare and coated SPIONS has been assessed via various methods, such as the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay [133], the comet assay [141], the cell-life cycle assay [137], the TUNEL assay [131], and several in vivo models [130,161,197,198]. The results confirm the biocompatibility of both bare and coated SPIONS at the applied doses, which were much higher than currently approved dose (i.e., 0.56 mg/kg) in humans [199].

10. Determination of physiochemical properties of SPIONS

The magnetic properties of MNP depend on their size, shape and microstructure. Several techniques can be used to determine their size and chemical composition and the properties of their magnetic surface. The size of the particles can be determined by transmission electron microscopy (TEM) images. This technique reports the total particle size and provides details of the size distribution. X-ray diffraction (XRD) can be performed to obtain information on the crystalline structure of the particles. The crystal size can be calculated also from the line broadening of the XRD pattern using the Scherrer formula. Mössbauer spectroscopy is an alternative technique for assessing crystal composition. This method gives information about the order of magnitude of the Néel relaxation time, an important characteristic of superparamagnetic particles. The photon correlation
spectroscopy (PCS) measurement gives a mean value of the hydrodynamic diameter of the particles. Magnetometry confirms the superparamagnetic properties of the particle and provides information on the specific magnetization and the mean diameter of the crystals. The fitting of the nuclear magnetic resonance dispersion (NMRD) curves according to the relevant theories gives the mean crystal size, the specific magnetization, and the Néel relaxation time [1,200].

11. Smart systems for multi-purpose bio-applications

Smart systems consist of a magnetic core for heat production and a multi-stimuli sensitive shell, such as pH- and thermo-sensitive polymers (e.g., block copolymers and copolymer hydrogels) [201]. These systems could significantly improve therapies for diseases. The localized and triggered treatments have emerged to enhance the hyperthermia treatment potential by delivering drugs to the targeted sites [153]. The drug is loaded in the stimulus sensitive shell, as enteric coatings to protect the release of drug. Upon reaching the targeted site, the temperature of magnetic core is increased (e.g., by an alternating current magnetic field) leading to the structural/conformational changes (e.g., breaking of covalent or non-covalent chemical bonds) in the thermo-sensitive polymeric shell. Consequently, the drug is released locally in the cancerous site [153,202,203] (Fig. 7). Similarly, not only thermo-sensitive properties, but also pH-sensitive characteristics of polymers can be utilized to target inflammatory sites [201].

The commonly known multi-stimuli responsive polymers are presented in Table 2. Their main application is the specific drug release. More information considering these polymers can be found in several comprehensive reviews [201,204–208].

In order to have a good control of the release profile, the amount of heat produced by the magnetic core should be optimized. It is noteworthy that in the optimization process, a good knowledge of the several relevant factors should be achieved (e.g., the strength and frequency of the applied magnetic field, the depth and concentration of the smart MNP in tissue, their size, shape and composition) [81,209].
addition to thermo-sensitive properties, some polymeric shells (e.g., polyethylene glycol based hydrogels) have a cross linking capability that leads to more controlled delivery systems [133,210]. Hayashi et al. [230] showed that heat is not only useful for hyperthermia treatment, but also can act as a driving force for drug-release. In this case, β-cyclodextrin (CD) acted as a drug container for hydrophilic (paclitaxel) or lipophilic (doxorubicin) structures. Drugs incorporated in the CD can thus be released through the use of induction heating, or hyperthermic effects, by applying a high-frequency magnetic field. For example, Hayashi et al. [228] synthesized folic acid (FA) and CD-functionalized SPIONs, FA-CD-SPIONs; FA being well-known as a targeting ligand for breast cancer tumor and endowing the SPIONs with a cancer-targeting capability. Through induction heating, drug release was triggered from the CD cavity on the particle—a behavior that was controlled by switching the high-frequency magnetic field on and off. The FA-CD-SPIONs are no

Fig. 6. Comparison of the NanoPlan®-predicted and actual SPION- and temperature distribution for (a) recurrent cervical cancer of the pelvic wall and (b) recurrent prostate carcinoma.
With permission from [38].
cytotoxic for cells. Thus, these systems can serve as a novel device for performing drug delivery and hyperthermia simultaneously.

Another drug delivery system, based on covalently attaching genistein onto Fe₃O₄ MNP coated by cross-linked carboxymethylated chitosan (CMCH), has been developed [231]. The effects of free genistein and Fe₃O₄-CMCH-genistein nanoconjugate on the proliferation and apoptosis of the gastric cancer cell line SGC-7901 were investigated by MTT assay and flow cytometry (FACS). Together, these methods indicated that the Fe₃O₄-CMCH-genistein nanosystem significantly enhanced SGC-7901 cancer cell apoptosis. This drug delivery system is thus promising for future multifunctional chemotherapeutic applications that combine drug release and magnetic hyperthermia therapy [232].

12. Examples of in vivo applications

The influence of biomagnetic Fe/Fe₃O₄ core/shell MNP combined with short external alternating magnetic field (AMF) exposure on the growth of subcutaneous mouse melanomas (B16-F10) was evaluated [150]. These MNP were designed for cancer targeting after intratumoral or intravenous administration. The magnetic hyperthermia results obtained after intratumoral injection indicated that micromolar concentrations of iron given within the modified MNP caused a significant anti-tumor effect on murine B16-F10 melanoma with three short 10-minute AMF exposures. A decrease in tumor size was also observed after intravenous administration of the MNP followed by three consecutive days of AMF exposure 24 h after the MNP injection. These results indicate that intratumoral administration of surface modified MNP can attenuate mouse melanoma after AMF exposure. Moreover, the authors found that after intravenous administration of micromolar concentrations, these MNP were capable of causing an anti-tumor effect in a mouse melanoma model after only a short AMF exposure time. In this case, the tumors decreased compared to the control group which increased.

Matsuoka et al. [162] have developed magnetic cationic liposomes (MCL) based on SPIONs and investigated their in vivo efficacy for hyperthermia treatment of hamster osteosarcoma. Magnetoliposomes were injected directly into the osteosarcoma and then subjected to an alternating magnetic field. The tumor was heated above 42 °C, and complete regression was observed in 100% of the treated group hamsters (Fig. 8). At day 12, the average tumor volume of the treated hamsters was about 1/1000 of that of the control hamsters. Du et al. [233] assessed the thermodynamic characteristics of a nanosized As₂O₃/Fe₃O₄ complex and validated the hyperthermia effect, when combined with magnetic fluid hyperthermia (MFH), on xenograft HeLa cells (human cervical cancer cell line) in nude mice. Thermo chemotherapy with these MNP showed a significant inhibitory effect on the mass (88.21%) and volume (91.57%) of xenograft cervical tumors (p < 0.05 for each measurement). In addition, the expression of CD44v6, VEGF-C, and MMP-9 mRNA, which are related to cancer and/or metastasis, were significantly inhibited. These nanosystems combined with MFH are thus a promising technique for the minimally invasive elimination of solid tumors and may also be useful for the treatment of metastases by inhibiting the expression of several growth-related factors.

A feedback temperature control system has been developed to keep the MNP at a constant temperature to prevent overheating in the tumors such that a safer and more precise cancer therapy becomes feasible [234]. The technique involves injecting a formulation that solidifies and form an implant in vitro. The implant entraps SPIONs embedded in silica microbeads to magnetically induce hyperthermia, and it can be repeatedly heated in an AMF. By using the feedback

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Common polymers showing thermo-sensitive characteristics.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shell</td>
<td>Remark</td>
</tr>
<tr>
<td>Poly(N-isopropylacrylamide)</td>
<td>Lower critical solution temperature (LCST) of 40–45 °C; LCST can be altered by the judicious selection of co-monomers that impart an increase or decrease in the polymer's hydrophilicity; squeezing-controlled release is the main drug releasing mechanism.</td>
</tr>
<tr>
<td>Poly(N,N’-diethylacrylamide)</td>
<td></td>
</tr>
<tr>
<td>Poly(propylene oxide)</td>
<td></td>
</tr>
<tr>
<td>Poly(vinyl ethers)</td>
<td></td>
</tr>
<tr>
<td>Copolymers</td>
<td>Poly(methacrylic acid-co-N-isopropylacrylamide)</td>
</tr>
<tr>
<td></td>
<td>Poly(N-isopropylacrylamide-co-N-acryloylpyrrolidine)</td>
</tr>
<tr>
<td></td>
<td>Poly(ethoxylglycidyl ether)/poly(propylene oxide) triblock</td>
</tr>
</tbody>
</table>
temperature control system, MNP can be heated up to specific constant temperatures, e.g., 37, 40, 42, 45, 46, and 47 °C, with a variation of less than 0.2 °C. With this approach, the in-vitro survival rate of tumor cells at different temperatures can be systematically explored. The authors found experimentally that the survival rate of cancer cells could be greatly reduced when CT-26 cancer cells were heated above 45 °C. In addition, localized temperature increases as high as 59.5 °C could be successfully generated in rat livers. Finally, they report that a complete regression of the tumor was achieved.

Le Renard et al. [82] investigated a new heat delivery technique for the local treatment of solid tumors. Their technique involves injecting a formulation that solidifies to form an implant in situ. This implant entraps SPIONs embedded in silica microbeads for magnetically induced moderate hyperthermia. Particle entrapment prevents phagocytosis and distant migration of SPIONs. They evaluated heating and treatment efficacies by means of thermometry and survival studies in nude mice carrying subcutaneous human coloanocarcinomas. After injection of the formulation into the tumor, a single 20 min hyperthermia treatment was delivered by 141 kHz magnetic induction using field strengths of 9 to 12 mT under thermometry. After treatment with the 12 mT field, five of eleven mice (45%) survived 1 year without any tumor recurrence; a result that is promising for tumor therapy using magnetically induced moderate hyperthermia through injectable implants.

The efficiency of thermotherapy using magnetic nanoparticles for minimally invasive treatment was investigated on experimental glioblastoma multiforme in a rat tumor model [24]. Tumors were induced by implantation of RG-2-cells into the brains of rats. Treatment was carried out using an alternative magnetic field system operating at a frequency of 100 kHz and variable field strength of 0–18 kA/m. The effectiveness of treatment was investigated by the survival time of the animals and histopathological examinations of the brain and the tumor. Thermotherapy with aminosilane-coated nanoparticles led up to 4.5-fold prolongation of survival over controls.

Recently, Bruners et al. [235] showed that CT-guided magnetic thermoablation of malignant kidney tumors is technically feasible in an animal model. Tumors were implanted into the kidneys of rabbits and allowed to grow for 2 weeks. After preinterventional CT perfusion imaging, CT-guided injection of MNP was performed, followed by exposure of the animals to an alternating electromagnetic field for 15 min (∼0.32 kA/m). Then animals underwent CT perfusion imaging again. After image-guided intratumoral injection of ferrofluids, the depiction of nanoparticle distribution by CT correlated well with macroscopic evaluation of the dissected kidneys.

13. Conclusions and future perspectives

SPIONs play an important role in the development of hyperthermia for treatment of tumors in vivo. Size and surface modified MNP enable a safe application to the tumor and high heating efficiency by Neel relaxation which promises good therapeutic success. Grafting cancer-specific binding agents to MNP would make magnetic fluid hyperthermia treatment much more selective than traditional chemotherapy and even conventional hyperthermia. Furthermore, MNP can be magnetically targeted and/or concentrated in the target tissue, and heating is then only induced to significant temperatures where the MNP have been deposited. In addition, tissue-deposited MNP will generally stay where they were initially deposited, thus allowing for repeated and concentrated hyperthermia treatments in the same area.

At the moment the amount of particles delivered to the tumor tissue by means of antibody targeting is too low for a sufficient temperature increase. Therefore, the challenges in this field will be the design of stealth nanoparticles able to circulate in the blood compartment for a long time and the surface grafting of ligands able to facilitate their specific internalization in tumor cells. Many groups focus their work on the development of improvement of these targeting so that an enhancement of the targeting efficiency can be expected in the near future. The absorber concentrations reachable in a tumor by direct injection are able to produce enough heating power with present particles for hyperthermia treatment. But for the use of antibody targeted SPIONs the heating power of the particles has to be increased. This improvement can be reached by optimized combination of particle diameter and size distribution with the amplitude and frequency of the alternating magnetic field.
Most research has been evaluated in preclinical studies. The results of first clinical trials are very promising. But it is too early to claim therapeutic advantages because survival and disease progression benefits were not defined endpoints of the feasibility studies.

There are several matters that should be considered to enhance the hyperthermia yield of SPIONs, such as in vivo control of heat distribution [236], managing of the nanoparticles’ surface for fast internalization by the target cells [237], and optimization of the biophysicochemical properties [238]. An inhomoogeneous particle distribution in the tissue may lead to the occurrence of hot spots where the high temperature causes necrosis of the tissue. In contrast, from a physical point of view SPIONs are very suitable to serve as heating distribution must be integral parts of future research.

Most research has been evaluated in preclinical studies. The results of first clinical trials are very promising. But it is too early to claim therapeutic advantages because survival and disease progression benefits were not defined endpoints of the feasibility studies.

There are several matters that should be considered to enhance the hyperthermia yield of SPIONs, such as in vivo control of heat distribution [236], managing of the nanoparticles’ surface for fast internalization by the target cells [237], and optimization of the biophysicochemical properties [238]. An inhomoogeneous particle distribution in the tissue may lead to the occurrence of hot spots where the high temperature causes necrosis of the tissue. In contrast, from a physical point of view SPIONs are very suitable to serve as heating distribution must be integral parts of future research.

Finally, it can be said that it is worth noting that great efforts have led to promising preclinical and clinical trials of magnetic hyperthermia by using water based dispersions containing SPIONs. From the physical point of view SPIONs are very suitable to serve as heating source during magnetic fluid hyperthermia and further research in this field will lead to a feasible solution or reduction of the above mentioned problems which enables a more profound testing of this promising therapeutic method for cancer treatment.

References

Zimmer A, Chetoni P, Saettone MF, Zerbe H, Kreuter j. Evaluation of pilocarpine-

Lehr CM, Bouwstra JA, Schacht EH, Junginger HE. In vitro evaluation of

Tian J, Feng YK, Xu YS. Ring opening polymerization ofD,L-lactide on magnetite

Chen KL, Mylon SE, Elimelech M. Aggregation kinetics of alginate-coated

Chilkoti A, Dreher MR, Meyer DE, Raucher D. Targeted drug delivery by thermally

Durrani AM, Farr SJ, Kellaway IW. In

Hasan E, Zhang M, Muller AHE, Tsvetanov CB. Thermosasssociative block copolymers of

Hoare T, Pelton R. Functional group distributions in carboxylic acid containing

Meeensch SA, Anderson KW, Hilt J. Synthesis and characterization of thermo-

Miyamoto M, Sawamoto M, Higashimura T. Living polymerization of isobutyl

Fujita K, Ishibashi T, Yoshimura K, Nakahama S. Controlled anionic polymerization of

Zhang C, Johnson DT, Brazel CS. Numerical study on the multi-region bio-heat

Miyamoto M, Sawamoto M, Higashimura T. Living polymerization of isobutyl

Miyamoto M, Sawamoto M, Higashimura T. Living polymerization of isobutyl

