The precise molecular location of gadolinium atoms has a significant influence on the efficacy of nanoparticulate MRI positive contrast agents†

Yang Li,a Sophie Laurent,b Lars Esser,d,e Luce Vander Elst,b Robert N. Muller,b,c Andrew B. Lowe,*d Cyrille Boyer,*d and Thomas P. Davis*ef

In this work, we studied the influence of the structure of macromolecular ligands on the relaxivity of gadolinium contrast agents constructed as nanoparticle systems. Macromolecular ligands were assembled as single-molecule nanoparticles in the form of either discrete core cross-linked star polymers or hyperbranched polymers. 1-(5-Amino-3-aza-2-oxypentyl)-4,7,10-tris(2-tert-butoxycarbonylmethyl)-1,4,7,10-tetraaza-cyclododecane (DO3A–tBu–NH2) chelate was incorporated into different parts (arms, cores, and end-groups) of the polymeric structures using activated ester/amine nucleophilic substitutions, deprotected and complexed with Gd3+. The relaxivity properties of the ligated Gd3+ agents were then studied to evaluate the effect of macromolecular architecture and Gd3+ placement on their behavior as discrete nanoparticle magnetic resonance imaging (MRI) contrast agents. The precise placement of Gd3+ in the polymeric structures (and therefore in the nanoparticles) proved to be critical in optimizing the performance of the nanoparticles as MRI contrast agents. The relaxivity was measured to vary from 11 to 22 mM⁻¹ s⁻¹, 2–5 times higher than that of a commercial DOTA–Gd contrast agent when using a magnetic field strength of 0.47 T. The relaxivity of these nanoparticles was examined at different magnetic fields from 0.47 T to 9.4 T. Finally, the residence time of the coordinated water (τw) and the rotational correlation time of the final molecule (τR) were evaluated for these different nanostructures and correlated with the polymeric architecture.

Introduction

Magnetic Resonance Imaging (MRI) is an indispensable clinical tool used for the early detection of diseases with widespread applications in cancer and cardiovascular diagnosis. MRI is a non-invasive technique, exhibiting excellent spatial and temporal resolution whilst obviating exposure to harmful radiation. However, the sensitivity of MRI to differences in tissue type is relatively low. To overcome this lack of sensitivity, contrast agents (CAs) are usually administered to the patient prior to the MRI procedure. The contrast agent enters the circulation system and serves to shorten the longitudinal (T1) or transversal (T2) relaxation times of surrounding water protons (under an applied magnetic field). Two broad categories of CAs for MRI exist: (1) positive (or T1) contrast agents that mainly shorten T1 and give rise to image brightening, these are most commonly paramagnetic gadolinium based CAs or (2) negative (or T2) contrast agents that largely decrease T2 leading to image darkening; superparamagnetic iron nanoparticles being the most important example.4–10 Positive contrast agents based on low molecular weight Gd3+ chelates, namely Gd-diethylenetriaminepentaacetic acid (Gd–DTPA) or Gd-tetraazacyclododecanetetraacetic acid (Gd–DOTA), exist as commercial products and are routinely employed in clinical settings.5,11,12 New, higher magnetic field (3.0 T) MRI scanners have entered the market, providing improved image resolution and detection limits. The currently used commercial [low molecular weight] CAs have an inadequate performance at higher magnetic fields leading to a significant decrease in image contrast. Currently, to overcome this contrast problem at higher field strengths, clinicians need to increase the concentration of Gd3+ to offset the relaxivity decrease. An increase in Gd3+ contrast agent is seen to be undesirable both from a cost and a safety viewpoint as any Gd3+ leakage and/or systemic accumulation can (in a small
polymer arms were synthesized using two different RAFT agents. Table 1 lists the different polymers that were prepared.

Synthesis of core cross-linked star A. In CCS-A, the activated ester groups were incorporated at the termini of the polymer arms (the star periphery) using a NHS functionalized RAFT agent.‡ The NHS-RAFT agent (Fig. S2 and S3 in the ESI†) was used to control the polymerization of OEGA in the presence of AIBN as an initiator at 65 °C, yielding NHS-terminal OEGA. The polymer was purified and then characterized by NMR and SEC analyses. SEC analysis confirmed the successful synthesis of OEGA polymers with low dispersities ($D_m < 1.20$). ‡H NMR analysis (Fig. S4 in the ESI†) confirmed the presence of terminal NHS groups by the presence of a signal at 2.9 ppm, which was then employed to calculate the molecular weight of the chains via the following equation: $M_w,\text{NMR} = \left(\frac{\text{ppm at 2.9 ppm}}{3 \times \text{ppm at 2.3 ppm}}\right) \times M_w^{\text{OEGA}} + M_w^{\text{RAFT}}$, with ppm at 2.3 ppm and ppm at 2.9 ppm corresponding to the integration of signals at 3.3 ppm and 2.9 ppm. The theoretical molecular weight values were in accord with the experimental molecular weights obtained using SEC and NMR analyses. Subsequently, the NHS-OEGA was chain extended and cross-linked to form stars (using a [P(OEGA)]$_0$: [Cross-linker]$_0$ ratio of 1 : 8).

Synthesis of core cross-linked star B (CCS-B). In CCS-B, the activated ester (PPF) groups were incorporated into the polymer arms as follows: copolymerization reactions of PFP and OEGA were performed to yield linear poly(OEGA-co-PFFA) copolymers with a molar feed ratio of 70 mol% OEGA (Fig. S5 and S6 in the ESI†). Using 19F NMR analyses confirmed that the final compositions of the copolymer corresponded to the initial monomer feed ratios (Table 1). The polymerization reactions were controlled by the RAFT process as evidenced by the close accord of experimental and theoretical M_n values ($M_{n,\text{theo}} = 11 000$ g mol$^{-1}$, calculated from the following equation: $M_{n,\text{theo}} = (\alpha\text{[OEGA]}_0[\text{RAFT}]_0 \times M_{w}^{\text{OEGA}} + \alpha\text{[PFP]}_0[\text{RAFT}]_0 \times M_{w}^{\text{PFP}}) + M_{w}^{\text{RAFT}}$, with [OEGA]$_0$, [PFA]$_0$ and [RAFT]$_0$ corresponding to the initial concentrations of OEGA, PFP, and RAFT agents respectively). The copolymer chains all had relatively low dispersity values as determined by SEC (Fig. S1 in the ESI†). Subsequently, all copolymers were cross-linked in the presence of a disulfide cross-linker to yield CCS-B (using a [P(OEGA-co-PFP)]$_0$: [cross-linker]$_0$ ratio of 1 : 8)

Synthesis of core cross-linked nanogel star (CCS) polymers

CCS polymers were synthesized using an arm first approach as reported previously (Fig. S1 in the ESI†).‡‡ Three different polymer arms were synthesized using two different RAFT agents. Table 1 lists the different polymers that were prepared.

Scheme 1 Synthesis of polymeric contrast agents.
Characteristics of different star arms

<table>
<thead>
<tr>
<th>Arms</th>
<th>$M_{n,SEC}^b$ (g mol⁻¹)</th>
<th>$M_{n,NMR}^c$ (g mol⁻¹)</th>
<th>D_m^b</th>
<th>$F_{OEGA}^{d,e}$</th>
<th>$F_{AE}^{d,e}$</th>
<th>$f_{OEGA}^{d,e}$</th>
<th>$f_{AE}^{d,e}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arm-A</td>
<td>10 000</td>
<td>9800</td>
<td>1.16</td>
<td>97</td>
<td>3*</td>
<td>89</td>
<td>11*</td>
</tr>
<tr>
<td>Arm-B</td>
<td>9000</td>
<td>8900</td>
<td>1.14</td>
<td>78</td>
<td>22**</td>
<td>80</td>
<td>20**</td>
</tr>
<tr>
<td>Arm-C</td>
<td>11 000</td>
<td>10 700</td>
<td>1.14</td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

* AE: activated ester, * NHS active ester and ** pentafluorophenyl ester. Assessed by SEC in DMAC (0.03% w/v LiBr, 0.05% BHT) using a conventional calibration curve with narrow molecular weight distribution PS standards. Assessed by 1H NMR in CDCl₃ and calculated by conversion and composition. Initial feed molar composition (%). Molar composition (%).

Synthesis of core cross-linked star C (CCS-C). In CCS-C, the activated ester (PFP) groups were incorporated into the star cores as follows: an OEGA homopolymer with $M_n = 10 000$ g mol⁻¹ was prepared by the RAFT polymerization of OEGA at 60 °C over 12 h using AIBN as an initiator and 3-(trimethylsilyl)prop-2-yn-1-yl 2-(((3-propionic acid)thio)carbonothioyl)thio) propanoate as the CTA. OEGA was then used as a macroCTA to control the copolymerization of PFP in the presence of a cross-linker, N,N'-bis(acryloyl)cysteamine in toluene at 70 °C for 24 h, with a [PFP]/[cross-linker]/[OEGA] ratio of 30 : 8 : 1. We demonstrated previously⁵⁴-⁵⁷ that under reaction conditions where the cross-linker is only partially soluble in the polymerization solvent (toluene in this case) a high incorporation of arms occurs yielding low dispersity CCS polymers. 19F NMR analyses were used to confirm the presence of pentafluorophenyl ester (PFP) groups in the polymer chains as evidenced by the presence of signals at −152.5, −156.0 and −162.5 ppm (Fig. S8 in the ESI†). The precise composition of PFP groups in the star polymers was calculated using, 2,2,3-trifluoroethanol as a reference (see ESI† for details). The final concentration of PFP groups was found to correspond to the expected composition based on the monomer feed, see Table 2.

Characterization of core cross-linked nanogel star (CCS) polymers

Unpurified CCSs were analyzed by SEC to determine the efficiency of arm-polymer incorporation within the star structures and also to determine the molecular weights and D_ms of the resultant star polymers (Fig. 1A–C). All the star polymers manifest low D_ms (less than 1.20), as shown in Table 2. The CCSs were purified, removing any excess arm polymer, by precipitation in a mixture of diethyl ether and dichloromethane (DCM). SEC analyses were performed after confirming arm removal and retention of the narrow star molecular weight distributions (Fig. S1 in the ESI†). In addition, using the molecular weight data obtained by SEC, we estimated the number of arms on each star from the following equation: $N_{arms} = M_n^{CCS}/M_n^{Arm}$, where M_n^{CCS} and M_n^{Arm} correspond to the molecular weights of CCS and the arms; the CCS structures were found to contain ~6 arms. Using 19F NMR and 1H NMR analyses, we were able to determine the concentrations of PFP and NHS groups present in the CCS polymers (data shown in Table 2). The nanoparticles typically exhibit a size of around 15 nm with CCS nanoparticles (A, B and C) in water determined by dynamic light scattering (DLS) with low dispersities (0.1, measured by DLS) (Fig. 1D).

Synthesis of hyperbranched P(OEGA-co-PFPa) copolymers

A one-pot procedure was employed to synthesize the hyperbranched polymers.⁴⁸-⁵⁰ N,N'-Methylenbisacrylamide and 1,6-hexanediol diacrylate were chosen as cross-linkers. Copolymerization reactions with a monomer feed ratio of 12.8 : 3.3 : 1.6 : 1.0 ([OEGA]₀/[PFP]₀/[Cross-linker]₀/[RAFT]₀) were carried out at 60 °C for 24 h yielding hyperbranched polymers. The conversions of PFP, OEGA and cross-linker were monitored using 1H and 19F NMR analyses (see ESI† for calculation). Fig. 2 shows the monomer conversions for the syntheses of hyperbranched polymers made using the two different cross-linkers. The kinetics of

Table 2 Characteristics of core cross-linked nanogel star (CCS) polymers and hyperbranched polymers (HBP)

<table>
<thead>
<tr>
<th></th>
<th>$M_{n,SEC}^a$ (g mol⁻¹)</th>
<th>D_m^a</th>
<th>Size b (nm)</th>
<th>$M_{n,arm}^a$ (g mol⁻¹)</th>
<th>N_{arms}</th>
<th>F_{OEGA}^d (%)</th>
<th>F_{PFP}^d (%)</th>
<th>F_{NHS}^d (%)</th>
<th>$f_{OEGA}^{d,e}$ (%)</th>
<th>$f_{PFP}^{d,e}$ (%)</th>
<th>$f_{NHS}^{d,e}$ (%)</th>
<th>$N^{Gd_{arm}}$</th>
<th>$N^{Gd_{polymer}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCS-A</td>
<td>58 000</td>
<td>1.12</td>
<td>11</td>
<td>10 000</td>
<td>6</td>
<td>89</td>
<td>20</td>
<td>11</td>
<td>89</td>
<td>20</td>
<td>64</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>CCS-B</td>
<td>56 000</td>
<td>1.09</td>
<td>10</td>
<td>9000</td>
<td>6</td>
<td>80</td>
<td>20</td>
<td>11</td>
<td>80</td>
<td>20</td>
<td>68</td>
<td>63</td>
<td>60</td>
</tr>
<tr>
<td>CCS-C</td>
<td>68 000</td>
<td>1.14</td>
<td>11</td>
<td>11 000</td>
<td>6</td>
<td>60</td>
<td>20</td>
<td>11</td>
<td>60</td>
<td>20</td>
<td>85</td>
<td>150</td>
<td>133</td>
</tr>
<tr>
<td>HBP-D</td>
<td>34 000</td>
<td>1.53</td>
<td>9</td>
<td>—</td>
<td>—</td>
<td>73</td>
<td>25</td>
<td>11</td>
<td>73</td>
<td>25</td>
<td>47</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>HBP-E</td>
<td>39 000</td>
<td>3.71</td>
<td>10</td>
<td>—</td>
<td>—</td>
<td>76</td>
<td>24</td>
<td>11</td>
<td>76</td>
<td>24</td>
<td>52</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

* Assessed by SEC in DMAC (0.03% w/v LiBr, 0.05% BHT) using a conventional calibration curve with narrow PS standards. Assessed by DLS in water and counted by intensity. Number of arms on each star from the following equation: $N_{arms} = M_{n,arm}^a/M_n^{Arm}$, where M_n^{CCS} and M_n^{Arm} correspond to the molecular weights of CCS and the arms. Molar composition (%) assessed by 1H NMR in CDCl₃. Theoretical values of Gd^{11} calculated with the assumption that one DO3A contained one Gd11. Number of gadolinium atoms per macromolecule ($N^{Gd}_{polymer}$) calculated by $N^{Gd}_{polymer} = ([Gd content]/M_w^{polymer})$, with Gd content, M_w and $M_n^{polymer}$ correspond to the Gd content assessed by ICP-MS, molar mass of Gd, and molecular weight of polymer.
In the terpolymerization of PFPA, N,N'-methylenebisacrylamide as a cross-linker resulted in PFPA chain enrichment, and a monomer amide, OEGA, the PFPA initially polymerized preferentially, polymerizing faster than the other monomers, but in this case the cross-linker was incorporated more evenly throughout the chain reaction. In this case, we can envisage a slightly different hyperbranched structure, as shown in Scheme 2. SEC analyses confirmed the formation of hyperbranched polymers with broad molecular weight distributions (Fig. 2). Both hyperbranched polymer structures were easily redispersed in water, forming discrete nanoparticles with typical sizes of 10 nm (determined by DLS).

Hyperbranched polymers (HBP-D) made using N,N'-methylenebisacrylamide as a cross-linker

In the terpolymerization of PFPA, N,N'-methylenebisacrylamide, OEGA, the PFPA initially polymerized preferentially, resulting in PFPA chain enrichment, and a monomer concentration gradient within the chains as polymerization progressed, with the cross-linker functionality preferentially incorporated later in the polymerization, resulting in specific structures as shown in Scheme 2. SEC traces of the hyperbranched polymers indicated monomodal but non-symmetric distributions with $D_m < 1.6$ (Fig. 2C) and multimodal molecular weight distributions when N,N'-methylenebisacrylamide and 1,6-hexanediol diacrylate were employed respectively.

Hyperbranched polymers (HBP-E) made using 1,6-hexanediol diacrylate as a cross-linker

In the terpolymerization with 1,6-hexanediol diacrylate, as before the PFPA polymerized faster than the other monomers, but in this case the cross-linker was incorporated more evenly throughout the chain reaction. In this case, we can envisage a slightly different hyperbranched structure, as shown in Scheme 2. SEC analyses confirmed the formation of hyperbranched polymers with broad molecular weight distributions (Fig. 2). Both hyperbranched polymer structures were easily redispersed in water, forming discrete nanoparticles with typical sizes of 10 nm (determined by DLS).

DO3A post-modification of CCS and HBP polymers

The activated ester groups (PFP or NHS) were used to attach the DO3A chelating agent to the different tertiary structures. The ligand–modification reactions were carried out with a slight excess of the N-(2-propionamidoethyl)amine derivative of the chelate tri-tert-buty1-2,2',2''-(1,4,7,10-tetraazacyclododecane-1,4,7-triy1)triacetate (DO3A-Bu) in DMF for 48 h at room temperature (using a ratio [PFP/NHS]$_0 :$[DO3A]$_0 = 1 : 1.1$). Subsequently, FT-IR spectroscopy confirmed the absence of absorptions at 1780 cm$^{-1}$ and 1770 cm$^{-1}$ for PFP and NHS respectively, after reaction with DO3A. The successful reaction of PFPP activated ester groups was also confirmed by the absence of 15F NMR signals at ~ 152, ~ 157 and ~ 162 ppm (Fig. S18–S22 in the ESIF). 1H NMR spectroscopy was also used to confirm the successful attachment of DO3A, as evidenced by a new signal at 1.4 ppm arising from the tert-buty1 group and CH$_2$ ester group, respectively, resulting from the ESI reaction with DO3A. The successful reaction of DO3A, calculated using the following equation: $I_{DO3A} = I_{4.1-4.2 \text{ppm}} / (I_{1.4-1.7 \text{ppm} / 2})$ + $I_{4.1-4.2 \text{ppm}}$, correspond to the integrals of tert-buty1 group and CH$_2$ ester group, respectively, attached to the polymeric nanoparticles, in good accord with the number of activated ester groups incorporated into the polymeric nanoparticles.

Subsequently, the tert-buty1 groups were successfully cleaved using trifluoroacetic acid (TFA). CCS and HBP polymers were incubated with Gd$^{3+}$ for 48 h at pH = 8.0. After careful purification via dialysis against water for several days (until free Gd$^{3+}$ was completely absent), XPS confirmed that Gd$^{3+}$ was encapsulated into DO3A by the presence of a Gd$^{3+}$ binding energy at 143 eV (data not shown). The amounts of Gd$^{3+}$ encapsulated into the polymer nanostructures were determined by ICP-OES, as given in Table 2. The amounts of Gd measured to be encapsulated were completely consistent with theoretical calculations based on 1 : 1 stoichiometry. The different

![Fig. 1](image1.png) SEC traces (A, CCS-A; B, CCS-B; C, CCS-C) of CCS (—) and star arm (⋯⋯) and DLS measurements of different CCS (D).

![Fig. 2](image2.png) (A and C) PFPA, OEGA and cross-linker conversions versus time; and SEC traces of the hyperbranched polymer synthesized using (B) N,N'-methylenebisacrylamide and (D) 1,6-hexanediol diacrylate, respectively.

![Scheme 2](image3.png) Schematic structures of hyperbranched polymers synthesized using N,N'-methylenebisacrylamide and 1,6-hexanediol diacrylate, respectively.
nanostructures could each encapsulate from 6 to 133 Gd\(^{3+}\) ions. The sizes of the nanoparticles were determined by DLS in water, with sizes measured of 9–12 nm.

Relaxometric studies

The improvement in contrast induced by MRI positive CAs is generally represented by the relaxivity \(r_1\), defined as:

\[
r_1 = \frac{1}{[\text{Gd}^{3+}]} \times \left(\frac{1}{T_{1,\text{obs}}} - \frac{1}{T_{1,\text{H}_2\text{O}}} \right)
\]

where \([\text{Gd}^{3+}]\) is the concentration of Gd\(^{3+}\) in mM and \(T_{1,\text{obs}}\) and \(T_{1,\text{H}_2\text{O}}\) are the longitudinal relaxation times in the presence and absence of the MRI CA respectively. The relaxivity value depends on various factors including the external field strength, the number of coordinated water molecules, water exchange rate, rotational diffusion, first and second coordination sphere hydration, and the ion to water proton distance. Critical parameters such as the residence time of the coordinated water \(\tau_M\) and the rotational correlation time of the final molecule \(\tau_R\) are most influential in determining contrast efficacy when attaching CAs to a nanoparticle structure (Scheme 3).

The results obtained following relaxometric studies at 0.47, 1.41 and 9.4 T (37 °C) using the P(OEGA-co-DO3A-MA-Gd\(^{3+}\)) nanoparticle contrast agents with different Gd\(^{3+}\) placement are reported in Table 3. The values of \(r_1\) indicated an overall increase in relaxivity compared to the relaxivity of free (non-nanoparticles) DO3A-NH\(_2\)-Gd\(^{3+}\) (5.2 mM\(^{-1}\) s\(^{-1}\)) at 0.47 T at 25 °C. The increase in relaxivity is highest for the hyperbranched and CCS-A polymer architectures, with measured relaxivities three/four times higher than for the free chelate (Table 3).

At low magnetic field strength (0.47 T), CCS-C has the lowest relaxivity whilst the highest relaxivity was observed for CCS-A, which exhibits a relaxivity comparable to Gd-decorated dendrimers, with a five-fold increase in the relaxivity over values obtained when using a commercial contrast agent (Magnevist). The rigid nanoparticle structure imposes isotropic rotational dynamic restrictions, increasing \(\tau_R\) and yielding ionic \(r_1\) values in the order of several tens of mM\(^{-1}\) s\(^{-1}\). Interestingly, Gd-nanoparticles constructed from both HBP polymers (D and E) induce the same relaxivity at 0.47 T, independent of any differences in their molecular chain structures. The relaxivities obtained for HBP (D and E) are quite similar to the relaxivity induced by CCS-B (Gd in the star arms). At a clinical field strength (1.41 T), the \(r_1\) relaxivity of CCS-A decreased to 15.6 mM\(^{-1}\) s\(^{-1}\), while, in contrast, the other nanostructures were less strongly affected. Measurements taken at 9.4 T showed a further decline in induced relaxivity, \(r_1\), for all the nanostructures. Caravan et al. demonstrated that the relaxivity \(r_1\) of Gd decreases with magnetic strength and a maximum calculated relaxivity value for Gd\(^{3+}\) is around 18 mM\(^{-1}\) s\(^{-1}\) at 9.4 T. Fig. 3 shows the nuclear magnetic field relaxation dispersion (NMRD) profiles of the various nanoparticulate CAs. A maximum in relaxivity was observed for all the nanoparticle architectures at 40 MHz, within the magnetic field range (12.5 MHz to 125 MHz) used in clinical MRI scanners.

To better understand the differences in the mechanism of action of the CCS and HBP nanoparticles, nuclear magnetic relaxation dispersion (NMRD) profiles were analysed using the usual theoretical model including the innersphere contribution (IS) described by the Solomon–Bloembergen–Morgan equations, the outersphere contribution (OS) and when necessary a second sphere contribution (SS) was taken into account (Fig. S33 in the ESI†). The ‘best-fit’ parameters are given in Table 4.

Table 3 Relaxivity values for core cross-linked star polymers and hyperbranched polymers

<table>
<thead>
<tr>
<th>Material</th>
<th>0.47 T (mM(^{-1}) s(^{-1}))</th>
<th>1.41 T (mM(^{-1}) s(^{-1}))</th>
<th>9.4 T (mM(^{-1}) s(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCS-A</td>
<td>21.57</td>
<td>15.63</td>
<td>4.71</td>
</tr>
<tr>
<td>CCS-B</td>
<td>15.86</td>
<td>13.28</td>
<td>4.81</td>
</tr>
<tr>
<td>CCS-C</td>
<td>11.12</td>
<td>9.98</td>
<td>5.16</td>
</tr>
<tr>
<td>HBP-D</td>
<td>17.08</td>
<td>14.71</td>
<td>4.25</td>
</tr>
<tr>
<td>HBP-E</td>
<td>17.17</td>
<td>14.76</td>
<td>4.41</td>
</tr>
</tbody>
</table>

Scheme 3 Different parameters affecting the relaxivity of Gd\(^{3+}\) in water. \(q\), \(\tau_M\) and \(\tau_R\) correspond to the number of water molecules coordinated to Gd\(^{3+}\), water residency time and the rotational correlation time of the final molecule, respectively.

Fig. 3 \(^{1}H\) NMRD profiles of P(OEGA-co-DO3A-MA-Gd\(^{3+}\)) with various architectures.
Several fittings were performed on each sample including: (i) IS + OS + SS contributions with τ_m allowed to vary from 500 ns to 1000 ns, (ii) IS + OS + SS contributions with τ_m allowed to vary from 750 ns to 900 ns, (iii) IS + OS contributions with τ_m allowed to vary from 500 ns to 1000 ns and (iv) IS + OS contributions with τ_m allowed to vary from 750 ns to 900 ns.

For CCS-A, a second sphere contribution was needed to obtain good agreement between the experimental and the fitted data whereas for CCS-B, the model with IS + OS gave good results and for CCS-C, addition of a second sphere contribution led to very low q_{SS} ($q_{SS} < 0.1$) indicating that this contribution is negligible. For the HBP samples, both types of fittings gave good results.

The fitted parameters show that as expected for a Gd-complex with an amide group complexing the Gd$^{3+}$ ion, the water residence is quite long (750 to 1000 ns) and is quite similar for all samples. But the τ_R values are clearly dependent on the structure. CCS-A has the largest τ_R value indicating a poor flexibility of the Gd-complexes in this compound while for CCS-B, Gd-complexes seem to be rotating somewhat faster. The lowest τ_R value obtained for CCS-C could be explained by the reduced accessibility of water to the core which could lead to a lower water exchange rate. When τ_m was allowed to vary between 500 and 1500 ns during the fitting, a larger value of τ_R was obtained (0.74 ± 0.04 ns) with a τ_m equal to 1310 ± 44 ns. However this value of τ_R is still one order of magnitude lower than for CCS-A. For this type of compound with the Gd complexes in the core, it seems thus that some of the complexes are not accessible to water and thus not contribute to the observed relaxivity. Our results are in accord with the work reported on the functionalization of dendrimer surfaces using poly(ethylene glycol) (PEG) polymers; Kobayashi and co-workers36 reported that the relaxivity of Gd$^{3+}$-dendrimer could be decreased by attaching a PEG layer around the dendrimer cores.

The rotational motion (τ_R) values derived from all of the polymeric nanostructures are very slow and much lower than for small molecule contrast agents (0.1 ns) resulting in a 3 to 6 fold increase of r_1 relaxivity at low field strengths (Table 4). In CCS-B nanoparticles where Gd is positioned in the star-arms and HBP-D and HBP-E nanoparticles, comparable values of τ_R are obtained. These τ_R values are in the optimal range for low magnetic field strengths, as shown by Caravan et al.3,4,18,57 who performed simulations to understand the relative contributions of molecular parameters to longitudinal (r_1) and transverse (r_2) relaxivities as a function of the applied field. For example, Vasovist (MS-325) (an albumin-targeted intravascular contrast agent) displayed an increased relaxivity upon binding to albumin caused by a slower tumbling rate.3 The positive effect of a slower rotational motion on the r_1 relaxivity disappeared at field strengths of 9.4 T consistent with the prediction of Caravan et al.3 who showed that at very high field strengths an intermediate τ_R is more beneficial (0.5–4 ns). The nanoparticles built from star polymers provide a very versatile platform for studying the influence of the position of the Gd-complexes on the longitudinal relaxivity (r_1) of MRI contrast agents at different field strengths. Our results confirm that a low water exchange rate is a significant limiting factor in obtaining even higher relaxivity at all field strengths. The longitudinal relaxivity could be further improved by grafting Gd-complexes without amide function complexing the ion in order to increase the water exchange rate. Fig. S34 in the ESI† shows the relationship between the structure and the simulated relaxivity values using different τ_m and τ_R by Caravan et al.3

Conclusion

Complex polymeric architectures of functionalized P(OEGA) copolymers were synthesized as discrete single-macromolecule nanoparticle vectors for Gd ions, as MRI contrast agents.
Nanoparticles in the range 8–20 nm were easily prepared as MRI contrast agents. Our synthetic approach allowed us to tune the precise molecular placement of Gd ions within different localized environments inside the nanoparticles to allow optimization of MRI contrast at different magnetic field strengths. The relaxivity study confirms that a low water exchange rate plays a key role in the relaxivity at high magnetic field strength.

Experimental part

Materials

N-Hydroxysuccinimide (98%), 2-bromopropionyl bromide (97%), carbon disulfide (≥99.9%), 1-butanol (99%), triethylamine (≥99.9%), poly(ethylene glycol) methyl ether acrylate (480 g mol⁻¹, 99%, OEGA), trifluoroacetic acid (99%), N,N′-bis(acryloyl)cystamine (>97%), N,N'-methylenebisacrylamide (≥99.5%), 1,6-hexanediol diacrylate (80%) and gadolinium(III) nitrate hexahydrate (99.9%) were purchased from Aldrich and used as received. Pentafluorophenyl acrylate (PFPA) and 3-(trimethylsilyl)prop-2-yn-1-yl-2-(((((3-propionic acid)thio)carbonothioyl)thio)propanoate (TSPPA) were synthesized according to previously reported procedures. 2,2'-Azobis(isobutyronitrile) (AIBN, Wako Chemicals) was crystallized twice from methanol before use. 1-(5-Amino-3-aza-2-oxopentyl)-4,7,10-tris(tert-butoxycarbonylmethyl)-1,4,7,10-tetraazacyclododecane (DO3A-Bu–NH₂, >94%) was purchased from Macrocyclics (Dallas, TX) and used as received. All solvents were available unless mentioned. High-purity N₂ (Linde gases) was used for degassing. Membranes for dialysis (MWCO 50 000 Da) were purchased from Fisher Biotec (CelluSepT4, regenerated cellulose tubular membrane).

Synthesis of 2,5-dioxopyrrolidin-1-yl-2-(((butylthio)-carbonothioyl)thio)propanoate (DPBP)

\[
\text{Synthesis of N-succinimidyl bromoacetate. N-Hydroxysuccinimide (4.03 g, 35 mmol) was dissolved in 50 ml dichloromethane (DCM) in a 250 ml round bottom flask equipped with a magnetic stir bar in an ice bath. Triethylamine (3.75 g, 37 mmol) in 10 ml DCM was added drop-wise to the solution. After stirring for 30 min, a solution of 2-bromopropionyl bromide (7.99 g, 37 mmol) in 10 DCM was added drop-wise over 1 hour. The resulting solution was stirred overnight at room temperature. The mixture was then washed with brine, and the organic phase was collected and dried over anhydrous magnesium sulfate. The solvent was removed by rotary evaporation and further dried in a vacuum oven at room temperature overnight, yielding a white powder. Yield 7.26 g (82.9%). H NMR (300 MHz, CDCl₃) δ 4.57 (q, J = 7.0 Hz, 1H), 2.79 (s, 4H), 3.54 (s, 3H), 1.89 (d, J = 7.0 Hz, 3H) [Fig. S2 in the ESI†]}

Synthesis of OEGA linear arm (Arm A). OEGA (0.96 g, 2 mmol), DPBP (23 mg, 0.07 mmol) and AIBN (1.2 mg, 0.007 mmol) were dissolved in acetonitrile (2 ml). The mixture was degassed by purging with N₂ for 30 min at 0 °C and was then placed in an oil bath at 60 °C. The polymerization was conducted for 8 h and then stopped by cooling the mixture in an ice bath and exposure to air. Monomer conversion was determined by H NMR analysis and SEC analyses were undertaken to measure the molecular weight distributions. The polymer was purified by repeated precipitations in diethyl ether and then dried under vacuum. Yield 0.68 g (68.3%).

To make the star polymer, OEGA linear arm (0.5 g, 0.05 mmol, Mₙ = 10 000 g mol⁻¹, Dₙ = 1.16), N,N′-bis(acryloyl)cystamine (104 mg, 0.4 mmol), AIBN (2.5 mg, 0.015 mmol), and toluene (5 ml) were charged to a vial equipped with a magnetic stirrer. The mixture was purged with N₂ for 30 min at 0 °C, and then the polymerization was carried out at 70 °C for 24 h. After the polymerization, the vials were immediately cooled in an ice bath and the contents exposed to air. The polymer was purified by precipitation in tetrahydrofuran–petroleum spirit (1/1 v/v)
Paper

and then dried under vacuum. Yield 0.56 g (92.4%). The final composition determined by \(^1\)H NMR is equal to 89/11 mol% in OEGA and NHS ester (Fig. S1, S4 and S9 in the ESI†).

Synthesis of CCS-B

Synthesis of P(\text{OEGA-stat-PFPA}) linear arm (Arm B). OEGA (0.96 g, 2 mmol), PFPA (202 mg, 0.85 mmol), TSPPA (40 mg, 0.11 mmol), and AIBN (1.8 mg, 0.01 mmol) were dissolved in acetonitrile (2.8 ml). The mixture was degassed by purging with \(N_2\) for 30 min at 0 \(^\circ\)C and then placed in an oil bath at 60 \(^\circ\)C. The polymerization was conducted for 8 h and then stopped by cooling the mixture in an ice bath and exposure to air. Monomer conversion was determined by \(^1\)H and \(^{19}\)F NMR and SEC analyses were undertaken to measure the molecular weight distribution. The polymer was purified by repeated precipitations in diethyl ether and then dried under vacuum. Yield 1.02 g (84.8%).

To prepare the star polymer, OEGA-stat-PFPA linear arm (0.45 g, 0.05 mmol, \(M_n = 9000 \text{ g mol}^{-1}, \ D_m = 1.14\)), \(N,N'\)-bis(acryloyl)cystamine (104 mg, 0.4 mmol), AIBN (2.5 mg, 0.015 mmol), and toluene (5 ml) were charged to a vial equipped with a magnetic stirrer. The mixture was purged with \(N_2\) for 30 min at 0 \(^\circ\)C and then placed in an oil bath at 60 \(^\circ\)C. The polymerization was conducted for 8 h and then stopped by cooling the mixture in an ice bath and exposure to air. Monomer conversion was determined by \(^1\)H and \(^{19}\)F NMR and SEC analyses were undertaken to measure the molecular weight distribution. The polymer was purified by repeated precipitations in diethyl ether and then dried under vacuum. Yield 1.02 g (84.8%).

Synthesis of CCS-C

Synthesis of OEGA linear arm (Arm C). OEGA (0.96 g, 2 mmol), TSPPA (25 mg, 0.07 mmol) and AIBN (1.3 mg, 0.008 mmol) were dissolved in acetonitrile (2 ml). The mixture was degassed by purging with \(N_2\) for 30 min at 0 \(^\circ\)C and then placed in an oil bath at 60 \(^\circ\)C. The polymerization was conducted for 8 h and then stopped by cooling the mixture in an ice bath and exposure to air. Monomer conversion was determined by \(^1\)H NMR and \(^{19}\)F NMR and was equal to 80/20 mol% in OEGA and NHS ester (Fig. S1, S4 and S9 in the ESI†).

Synthesis of HBP-D

Synthesis of hyperbranched P(\text{OEGA-co-PFPA}). OEGA (5 g, 4.59 ml, 10 mmol), PFPA (620 mg, 2.6 mmol), \(N,N'\)-methylenebisacrylamide (199 mg, 1.29 mmol), TSPPA (250 mg, 0.78 mmol) and AIBN (8.5 mg, 0.052 mmol) were dissolved in acetonitrile (13 ml) and the mixture was purged with \(N_2\) for 30 min at 0 \(^\circ\)C. The solution was stirred at 60 \(^\circ\)C for 24 h and the polymerization was then stopped by cooling it in an ice bath. Aliquots were taken to determine the monomer conversion by \(^1\)H and \(^{19}\)F NMR and molecular weight by SEC. The polymer was purified by repeated precipitations in cold diethyl ether and then dried under vacuum. The final composition determined by \(^1\)H NMR and \(^{19}\)F NMR is equal to 75/25 mol% in OEGA and PFPA (Fig. S14 and S15 in the ESI†).

Synthesis of HBP-E

Synthesis of hyperbranched P(\text{OEGA-co-PFPA}). OEGA (5 g, 4.59 ml, 10 mmol), PFPA (620 mg, 2.6 mmol), 1,6-hexanediol diacrylate (292 mg, 1.29 mmol), TSPPA (250 mg, 0.78 mmol) and AIBN (8.5 mg, 0.052 mmol) were dissolved in acetonitrile (13 ml) and the mixture was purged with \(N_2\) for 30 min at 0 \(^\circ\)C. The solution was stirred at 60 \(^\circ\)C for 24 h and the polymerization was then stopped by cooling it in an ice bath. Aliquots were taken to determine the monomer conversion via \(^1\)H and \(^{19}\)F NMR and molecular weight by SEC. The polymer was purified by repeated precipitations in cold diethyl ether and then dried under vacuum. The final composition determined by \(^1\)H NMR and \(^{19}\)F NMR is equal to 76/24 mol% in OEGA and PFPA (Fig. S16 and S17 in the ESI†).

Chemical modification with DO3A-tBu–NH₂ chelate and deprotection

A typical procedure for the chemical modification of active esters (PFP and NHS esters) with DO3A-tBu–NH₂ is given as follows: star polymer (0.2 mmol of active ester functionality) was dissolved in DMF (2 ml). DO3A-tBu–NH₂ (153 mg, 0.22 mmol)
and triethylamine (22 mg, 0.22 mmol) were added, and the mixture was stirred for 48 h. The polymer was purified by several precipitations in diethyl ether and then analyzed by 1H NMR and 19F NMR spectroscopy. The solvent was evaporated, trifluoroacetic acid 2 ml was added, and the deprotection reaction was carried out overnight at room temperature. Then, unreacted TFA was removed by evaporation and the polymer was further purified by dialysis using a membrane with a molecular weight cutoff 50 000 Da for 3 days against water. The star polymer was recovered as a yellowish tacky solid after freeze-drying (Fig. S18–S26 in the ESI†).

Complexation with Gd$^{3+}$

The star polymer with DO3A moieties was dissolved in water, the pH was adjusted to 6, and the solution was heated at 60 °C for 1 h. Gd(NO$_3$)$_3$·6H$_2$O (1.5 eq.) was added, the pH was adjusted to 8, and the mixture was stirred for 48 h at room temperature. DOTA was then added to the aqueous solution to remove unreacted Gd$^{3+}$ ions; the polymer was dialyzed against water for 5 days and freeze-dried. The final Gd$^{3+}$ content was assessed using inductively coupled plasma optical emission spectrometry (ICP-OES).

Analyses

NMR spectroscopy. Polymer compositions were assessed by 1H and 19F NMR using a Bruker AC300F (300 MHz) spectrometer or a Bruker DPX300 (300 MHz) spectrometer.

Size exclusion chromatography (SEC). SEC analyses of polymer samples were performed in N,N-dimethylacetamide (DMAc) with 0.03% w/v LiBr and 0.05% 2,6-dibutyl-4-methylphenol (BHT) using a Shimadzu modular system comprising a DGU-12A degasser, an SIL-10AD automatic injector, and a 5.0 µm bead-size guard column (50 × 7.8 mm) followed by four 300 × 7.8 mm linear Phenogel columns (bead size: a 5.0 µm; pore sizes: 105, 104, 103, and 500 Å) and an RID-10A differential refractive-index detector. The temperature of columns was maintained at 50 °C using a CTO-10A oven, and the flow rate was kept at 1 ml min$^{-1}$ using an LC-10AT pump. A molecular weight calibration curve was produced using commercial narrow molecular weight distribution polystyrene standards with molecular weights ranging from 500 to 106 g mol$^{-1}$. Polymer solutions at 2–3 mg ml$^{-1}$ were prepared in the eluent and filtered through 0.45 µm filters prior to injection.

Dynamic light scattering (DLS). DLS measurements were performed using a Malvern Zetasizer Nano Series running DTS software and using a 4 mW He–Ne laser operating at a wavelength of 633 nm and an avalanche photodiode (APD) detector. The scattered light was detected at an angle of 173°. The temperature was stabilized to ±0.1 °C of the set temperature. Aqueous solutions of polymer samples were filtered through a 0.45 µm pore size filter to remove dust prior to measurement. To assess size distributions, the autocorrelation function was fitted using the cumulants method.

Inductively coupled plasma-optical emission spectrometry (ICP-OES). The Gd$^{3+}$ content of the macromolecular CAs was determined by inductively coupled plasma-optical emission spectrometry (ICP-OES) using a Perkin-Elmer OPTIMA 7300 spectrometer. Samples were prepared by dissolving 0.5 mg of polymer in 10 ml of ultrapure water.

Relaxivity measurements. 1H NMRD curves (nuclear magnetic resonance dispersion) of the macromolecular CAs were obtained at 310 K on a Stelar fast cycling relaxometer (PV, Mede, Italy) over a range of magnetic fields extending from 0.25 mT to 0.94 T (0.01–40 MHz). Measurements of T_1 and T_2 relaxation times were performed at 310 K on Minispec Mq-20 and Mq-60 (Bruker, Karlsruhe, Germany) working at 20 MHz (0.47 T) and 60 MHz (1.4 T), respectively. Furthermore, measurements at very high magnetic field were performed on a 9.4 T Biospin 94/20 USR (Bruker, Karlsruhe, Germany) equipped with a Transceiver RES 1H 72 mm Quad RF coil. T_1 relaxation times were acquired using a Rapid Acquisition Rapid Echo with Variable Repetition Time (RARE-VTR) sequence, whereas T_2 relaxation times were obtained using a Multi-Slice-Multi-Echo (MSME) sequence.

Acknowledgements

The authors acknowledge the Australian Research Council (ARC) for funding in the form of a Discovery grant (DP110104251). In addition, we would like to acknowledge a significant research fellowship funding from ARC to CB (Future Fellowship (ARC–FT 120100096) and ARC–APD Fellowship) and to ABL (ARC–FT110100046). This work was supported by the ARC Programs of the French Community of Belgium, UAP VII and the FNRS (Fond National de la Recherche Scientifique). The support and sponsorship provided by COST Action TD1004. The authors thank the Center for Microscopy and Molecular Imaging (CMMI), supported by the European Regional Development Fund and the Walloon Region.

Notes and references