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Abstract—In this paper, we present a system for sketch 

classification and similarity search. We used deep convolution 

neural networks (ConvNets), state of the art in the field of image 

recognition. They enable both classification and medium/high-

level features extraction. We make use of ConvNets features as a 

basis for similarity search using k-Nearest Neighbors (kNN). 

Evaluation are performed on the TU-Berlin benchmark. Our 

main contributions are threefold: first, we use ConvNets in 

contrast to most previous approaches based essentially on hand 

crafted features. Secondly, we propose a ConvNet that is both 

more accurate and lighter/faster than the two only previous 

attempts at making use of ConvNets for handsketch recognition. 

We reached an accuracy of 75.42%. Third, we shown that 

similarly to their application on natural images, ConvNets allow 

the extraction of medium-level and high-level features 

(depending on the depth) which can be used for similarity 

search.1 

Keywords— Freehand sketch; DNN; ConvNets; Feature 

extraction; Sketch recognition 

I.  INTRODUCTION  

Freehand sketches are commonly used by humans. They 
are a simple and powerful tool for communication. They are 
easily recognized across cultures and can be used to both 
describe static and dynamic information. As a consequence, 
sketch recognition starts to attract more and more interest in the 
research community.  

Rencently, Deep Neural Networks (DNNs) have 
significantly improved performance in the field of image 
recognition. In contrast, sketch recognition state-of-the-art still 
relies mainly on hand crafted features and more traditional 
classification schemes. DNNs have not yet been effectively 
explored. One challenge comes from the fact that databases 
available for machine learning are very limited (in comparison 
to natural image recognition benchmarks), which may tame 

                                                           
1 This work was partly supported by the Chist-Era project IMOTION 
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down the benefit from DNNs, which typically require very 
large data sets. Also, DNNs feature extractors trained on 
natural image database (such as ImageNet) are not suitable for 
use with sketches (that are indeed very different, containing no 
color or texture information).   

In this work, we used deep Convolutional Networks 

(ConvNets), as particular structure if DNN. We first started by 

testing an architecture similar to the so-called AlexNet [13]. 

We trained our ConvNets from scratch on the TU-Berlin sketch 

recognition benchmark. We also tested the architecture 

proposed in [16], a modified version of the previous 

architecture to make it more suitable for sketches. Then, we 

compared and analysed the results from both, and proposed a 

new architecture that yields better results. Next, we also use 

this architecture to perform feature extraction from the sketch 

images. We show that a kNN method applied to these features 

is an appropriate approach for similarity search. We illustrate 

and discuss how features extracted from different layers 

(different depths) of the DNNs enable different facets of 

similarity (from more graphical from lower depth layers, to 

more semantic from higher depth layers) to be explored. 

II. RELATED WORK 

In this section, we review the work in the field of sketch 
recognition. Then, we briefly present some recent researches 
showing the power of ConvNets, as well as the two first 
attempts (to our knowledge) where ConvNets were used for 
sketch recognition. 

Works on sketch recognition goes back to the development 
of SketchPad [5]. Ever since, different computer vision 
approaches were used in order to achieve better results in 
multiple domains of application. LaViola et al. [7] investigated 
recognition of mathematical sketches. Ouyang et al. [8] 
addressed chemical structure drawings recognition. Cao et al. 
[1] proposed a low dimensional symmetry aware flip invariant 
descriptor for sketches. Li et al. [3] exploited local feature 
representations (using star graph based ensemble matching 
strategy) and global structures to address local and global 



variations. They trained SVM using bag-of-features (BOF) to 
select the top N most similar sketch categories to the query. 

In addition to the sparse and abstract nature of hand 
drawings (compared to natural images), there is also another 
challenge related to the lack of available databases for model 
training and benchmarking. Eitz et al. [2] defined a taxonomy 
of 250 object categories. They gathered 20000 unique sketches 
to form the first large scale dataset of human sketches (TU-
Berlin benchmark). For sketch category recognition, they used 
local feature vectors (to encode distributions of sketches), bag-
of-features representations [6], and multi-class support vector 
machines (SVM). Schneider et al. [4] modified the benchmark 
proposed by Eitz et al. [2] to make it more focused relevant 
aspect (what it look like) than person intention. Later on, they 
used SIFT, GMM based fisher vector and multi-class SVM to 
do sketch recognition. 

In the related area of natural images computer vision, 
supervised learning with ConvNets achieved beyond state-of-
the-art results [13, 14]. In general, ConvNets enable 
classification without requiring classic features extraction 
approaches, as the model trains itself to extract relevant 
features from pixels. So far, they were used only two times (in 
2015) for sketch recognition. Sarvadevabhatla et al. [15] used 
two popular ConvNets architectures (ImageNet ConvNet and a 
modified LeNet ConvNet) and fine-tuned their parameters on 
the sketch database. They used a subset of TU-Berlin sketch 
benchmark by retaining only 160 categories and 56 sketches 
from each category (as done in [4]). In contrast, Yang et al. 
[16] trained a ConvNet from scratch instead of fine tuning 
existing ones. They show that the receptive fields of the first 
layer ConvNet filters had to be increased (compared to typical 
settings for natural images) to improve generalization 
performance.  

III. APPROACH 

Our work relies on the TU-Berlin benchmark too. Our 
system (illustrated in Fig. 1) uses a ConvNet for classification 
but also for features extraction and similarity search: the 
extracted features are used with kNN to find sketches that 
resemble to the query. To better understand the properties of 
those features, we use features extracted from three different 
layers (depth) of our ConvNets. When using the system, the 
user can draw a sketch in a query-by-example (QbE) mode. 
The ConvNet computes the features from the query and kNN 
searches for similar sketches in the database. Similarity is a ill-
defined concept. In practice, a user may look for images (or in 
our case sketches) that are perceptually more similar, or else 
semantically/conceptually more similar (which in contrast may 
imply neighbors that are visually quite different in terms of 
color and textures). We believe DNNs trained in a supervised 
way provide an interesting approach to explore different facets 
of similarity, from lower-level (perceptual) through the features 
extracted from lower layers, to high-level (semantic) through 
features extracted in deeper layers, which have been shown 
indeed to compute more invariant features. In this paper, we 
want to illustrate and discuss how features extracted from 
different layers emphasized different facets of sketch 
similarity. 

 

Figure 1: our system for classification and similarity search 

IV. MODEL 

In the area of natural image classification (object and scene 
recognition), and when ConvNets are used, most of the time, 
the baseline architecture starts from earlier work such as 
AlexNet [13]. Besides, visualization techniques of the filters 
towards which hidden layers converge is an interesting 
diagnostic tool. As the use of ConvNets for processing sketch 
images is quite recent [15, 16], there is however no previous 
work on trying to optimize the baseline architecture.  

 

Figure 2: filters from the first layer (left, AlexNet. Right, our ConvNet). 

In order to select a good design for our ConvNets, we 
started looking more closely at the two previous approaches 
[15, 16]. In [15], the authors retrained two different ConvNet 
models. The first choice was AlexNet (initially trained on 
ImageNet) because of the good results it achieved on different 
image databases. The second choice was LeNet (initially 
trained on MNIST) because of the similarity in the nature of 
the content to be processed (MNIST containing handwritten 
digits). They used those as feature extractors, coupled with a 
SVN trained to classify the sketches from the obtained features. 
Then they followed the same protocol as Schneider [4], 
enabling a comparative evaluation on the TU-Berlin corpus. In 
[16], the authors used similar architectures but they trained the 



ConvNets on TU-Berlin data from scratch. Sketches are very 
different in nature that natural images. Therefore, there is small 
chance that ConvNet filters learned from natural images will be 
effective for sketches. They found on one side, that using filters 
with a larger receptive field (larger filter kernels) in the first 
layer is necessary for sketch classification, and on the other 
side that filters look significantly different that similarly trained 
filters on natural images, (in Fig. 2 we picture a similar 
observation from our models, showing the filters from the first 
layer of AlexNet, and those from one of our ConvNets trained 
on sketches from scratch). Another observation was made in 
[16]: contrary to what is expected, using more filters leads to 
better performance, despite the more abstract nature of 
sketches. 

Studying both works however left us undecided about the 
choice of the proper architecture to start from, as indeed some 
contradictions can be observed. For example, AlexNet gave 
better results than LeNet even if the nature of sketches and 
MNIST images is closer. Also, the importance of using larger 
filters is stressed in [16], while [15] achieves interesting results 
even when using small filter kernels. We believe those 
contradictions are inherent to the preliminary nature of such 
works. 

Finally, we decided to further test several variations of the 
proposed architectures (the one from [16] and the AlexNet). 
We however trained both from scratch. From our various trials, 
which results can only be summarized here given space 
constraints, we noticed the following: 

- As expected, the filters are very different from what 
we find when training is done on natural images; 

- The use of more and bigger filters in the first layer 
was an interesting idea, especially since there is an 
analogy to be made between what happens when we 
do so, and what happens inside the ConvNets when 
trained on natural images. We know that many filters 
from the first layer of ConvNets typically act as edge 
detectors. Hence, they compute feature maps (FMs) 
with similar properties than sketches. These FMs are 
numerous and pass through a layer of Max-pooling 
before reaching the next layer, makes the receptive of 
the next layer virtually larger. So, we also tried an 
alternative to the use of big kernels by reducing the 
size of the input, but the results have become worse. 
This is probably due to the abstraction of this kind of 
representation that makes the depth of the network 
essential for sketch recognition. However, after 
testing both approaches, the results were not 
conclusive enough to justify the use of larger filters. 
We also observed in our tests, this large filters still 
similar to the small ones learned with AlexNet 
(trained on sketches); 

   

Figure 3: example shown the impact of using LRN with sketches 

- Using larger kernels just before the classification 
(latest) layers of the ConvNets improves results. The 
reason might be that unlike natural images where we 
have additional information (like color, texture, etc.) 
that make object identification less abstract, in the 
case of sketches, in order to achieve accurate 
recognition, we need accurate identification of larger 
structures specific to each category. A good 
understanding of spatial arrangements can be 
achieved using those larger kernels; 

- Using zero-padding of the original images helps to 
improve the results, which is understandable because 
it helps to preserve the information far from the center 
when multiple convolutions are performed. Also, 
unlike images, sketches are sparse, and filling unused 
areas with zeroes (white color as colors are reversed 
before training, cfr. Section V) has less dramatic 
consequences on the output; 

- In [16], it was reported that Local Response 
Normalization (LRN) is not useful in the case of 
sketches. We believe the reason is that applying LRN 
to sketches results in some form of contour dilation, a 
“shadow” effect illustrated in Fig. 3. On sketches, this 
only creates redundancy. The shadow will result in the 
activation of neurons of type B in both sides of the 
original contour, while the contour itself will produce 
activations of neurons of type A for the same 
information. This will make the learning of the first 
layer filters harder (requiring more filters and hence 
more parameters), also affecting the sparsity of the 
network. 

As a consequence, compared to previous works, we ended 
up using small and fewer kernels in the first layer. Firstly, it is 
understandable we don’t need as much filters as for images 
which naturally present more varied content. Secondly, smaller 
kernels are appropriate as sketches typically exhibit sharp 
edges. We also use zero-padding before multiple convolution 
layers in such a way the size of the feature maps goes down 
only because of the max-pooling layer that follows. Finally, we 
use larger kernels in the latest convolution layers, those right 
before the classification layers of our ConvNets. We also used 
fewer filters in the last layers because for sketch recognition, 
what is needed is more powerful and abstract features 
extractors rather than more features for the classifiers. This also 
goes well with the plan to use these features for sketch retrieval 
using kNN. 

V. IMPLEMENTATION DETAILS 

Our system is based on the use of the publicly available 
Torch toolbox [17]. The details for the used architecture are 
listed in Table 1. We also used the kNN implementation from 
OpenCV [18]. 

Training - We start by rescaling the sketches from 
1x1111x1111 to 1x180x180 and reversing the black and white 
colors. Then we remove the global mean and store all the 
sketches in RAM for fast access, training being performed on 
GPU. During training, at each iteration we randomly select 64 
samples from 64 different sketches categories. Next, we create 



64 matrixes of size equal to 1x224x224 filled with mines the 
global mean and add the mean-normalized sketches at random 
positions inside those matrixes, in order to improve invariance 
to translation. Later, we perform random rotations [-35:5:35] 
and mirroring. We also use the dropout technique to further 
favor generalization. 

Table 1: details of our ConvNets parameters, for each of the 15 layers. 

Ind Type Filter  

size 

Filter  

num 

Stride Pad 

1 Conv 7x7 64 2 0 

2 ReLU - - - - 

3 Maxpool 3x3 - 2 0 

4 Conv 5x5 128 2 2 

5 ReLU - - - - 

6 Maxpool 3x3 - 2 - 

7 Conv 3x3 256 1 1 

8 ReLU - - - - 

9 Conv 3x3 512 1 0 

10 ReLU - - - - 

11 Maxpool 3x3 - 2 - 

12 Conv 5x5 4096 1 0 

13 ReLU - - - - 

14 Dropout - - - - 

15 Conv 1x1 250 1 0 

 

At the start, we set the learning rate at 0.1 and a momentum 
equal to 0.9. After 80 epochs (epoch = 13056 samples were 
presented to the ConvNet) we start reducing gradually those 
values in order to catch more details.  

Testing - During testing, for each sketch we create ten 
1x224x224 matrices filled with the global mean. We then 
generate ten variants of the sketch (by placing the original one 
in the center and on the four corners + mirroring). All these are 
passed them through our ConvNet that will estimate for each 
sketch the probability of each object class. Next, we compute 
the final vector of class probabilities as a product of the ten 
different estimates. Finally, we hence obtain a vector with 250 
probabilities (one per class) and the winner class is the one that 
has the highest probability. This process of creating variants of 
the test images and “averaging” probability estimates is typical 
when using ConvNets. 

VI. EXPERIMENTS AND EVALUATION 

In this section, we summarize our results. As already 
mentioned, we used the TU-Berlin sketch benchmark. It 
contains 250 classes and for each class we have 80 instances 
(binary images). In total, this amounts to 20,000 sketches with 
resolution: 1x1111x1111. 

A. Classification 

As in [16], we followed the guidelines suggested by [2]. 
We prepared three different splits. In each split we use 67% of 
the original data (53 sketches) for training and the 33% 
remaining (27 sketches) for test. Three ConvNets were trained 
separately on the three splits, using the exact same architecture 
as presented in the previous section. The classification results 
are presented in Table 2. In table 4, we compare our results 

with those of previous state of the art. We have been able to 
improve the classification accuracy by more than 3% absolute 
compared to the best previously published result.  

Table 2: our results for the three splits of TU-Berlin benchmark 

 Accuracy (%) 

ConvNet1 + split1 77.25 

ConvNet2 + split2 74.19 

ConvNet3 + split3 74.80 

mean 75.42 

B. Similarity Search 

We then switched to a subjective analysis of the interest of 
features extracted with the ConvNets for sketch similarity 
search. We began by using bottlenecks to reduce 
dimensionality of features coming from different layers. This 
means extracting features from the selected three layers (6, 11 
and 13). To train one layer (for each of the three layers) with Nl 
inputs (Nl = number of features in the output of layer l) and n 
outputs. In our case we set n to 1024. Once the training is done, 
we use these layers to build shorter vectors and pass them to 
the kNN system. 

 In Figure 4, we illustrate the results obtained with our 

system with an example. We notice that applying kNN with 

features from different layers leads to sensibly different and 

interesting results. Searching similar sketches using kNN 

applied on features from layer 6 leads to retrieved sketches 

exhibit local structures that are similar to the example query, 

suggesting that layer mainly captures local details, such as 

some patterns found on the body of the sketched zebra. This 

hence leads to a lot of confusion with sketches from other 

object classes but having those patterns in common. When 

using features from layer 11, the global shape of the animal's 

body starts to become more predominant, and combined with 

the previous features (layer 6), the retrieved results become 

more relevant. Finally, with layer 13, the resemblance is no 

longer based only on perceptual criteria such as the global 

shaper and the local hand-drawn patterns and it is clear that a 

more conceptual (semantic) feature representation has been 

learned. Hence, searching neighbors of the query sketch with 

kNN applied to layer 13 features retrieves not only similar 

sketches but also sketches representing the same concept.  For 

example, a zebra head is retrieved as the third best match even 

though it looks visually quite different. As can also be 

observed, when using those higher level features, there is only 

one retrieved sketch that does not represent an animal with a 

striped coat out 20 results (while with layer 11 we had 3, and 

layer 6, we had 18). We have done other tests that lead to the 

same conclusions. For example, we used kNN and majority 

vote (MV) method with the test sketches of the first split of the 

TU-Berlin sketch benchmark and we obtained results that 

confirm what has been noticed. In addition, we have the 

classification results obtained with the bottlenecks. Finally, to 

avoid the effect of adding a layer when using the bottleneck 

approach. We used principal component analysis (PCA) to get 

shorter vectors (1024 features) to use with kNN and majority 

vote. All results are reported in the table 3. These results show 

an interesting analogy with hierarchies of feature 



representations built when training ConvNets on natural 

images. 

Table 3 accuracy comparison using different approaches  

 Accuracy (%) 

Method Layer 6 Layer 11 Layer 13 

Bottleneck + kNN + MV 57.78 70.4 73.18 

Bottleneck + classification 62.7 73.88 75.18 

PCA + kNN + MV 2.37 5.53 70.41 

 

In Figure 5, there is an example that shows the benefits of 

using features coming from first layers. It is clear that the 

closest result to the query is the one with the blue box. We can 

see that using deeper features makes the closest result appear 

further away even if the concept remains good. Further work 

will include objective as well as user studies to assess how a 

QbE-based sketch search system can benefit from these 

properties. 

Table 4: results comparison 

Method Feature mAP (%) 

[2] SIFT-variant + BoF + SVM 56 

[16] Deep neural networks 72.2 

Ours Deep neural networks 75.42 

Human - 73 

VII. CONCLUSION AND FUTURE WORK 

In this paper, we first reviewed approaches that have been 

introduced recently in the field of sketch recognition using 

ConvNets. Then, we proposed a ConvNet architecture that is 

more accurate in terms of classification rate, and also less 

expensive (fewer and smaller kernels) than previous attempts. 

We also provided rationales for the various changes that we 

made in relation to what has been done before. Then, we 

showed for the first time (in the field of sketches) that 

ConvNets learn concepts that are becoming increasingly 

abstract with the depth of the network, and when coming closer 

to the last classification layers. This is very useful especially 

for sketch recognition, where the drawn representations are 

sometimes very abstract. We finally showed that the features 

learned by those ConvNets are useful for similarity search. 

In the future, we plan to further improve our system and also 

provide an objective assessment of the contribution of our 

similarity search approach to sketch retrieval, using proper 

evaluation metrics. We will also investigate the problem of 

sketch-based image retrieval, hence the possibility to retrieve 

natural images (or videos) from hand-drawn sketch queries.  
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kNN with features from layer 6 

kNN with features from layer 11 

kNN with features from layer 13 

Figure 4 example of results obtained with our system for similarity search 

kNN with features from layer 6 

kNN with features from layer 11 

kNN with features from layer 13 

Query 

Figure 5 an example that shows the relationship between depth and details conservation 
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