The Complexity of Human Ribosome Biogenesis Revealed by Systematic Nucleolar Screening of Pre-rRNA Processing Factors

Lionel Tafforeau,1,2 Christiane Zorbas,1,2 Jean-Louis Langhendries,1 Sahra-Taylor Mullineux,1 Vassiliki Stamatopoulou,1 Romain Mullier,1 Ludivine Wacheul,1 and Denis L.J. Lafontaine1,*

1Fonds de la Recherche Scientifique (FRS-FNRS), Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgium
2These authors contributed equally to this work
*Correspondence: denis.lafontaine@ulb.ac.be
http://dx.doi.org/10.1016/j.molcel.2013.08.011

SUMMARY

Mature ribosomal RNAs (rRNAs) are produced from polycistronic precursors following complex processing. Precursor (pre)-rRNA processing has been extensively characterized in yeast and was assumed to be conserved in humans. We functionally characterized 625 nucleolar proteins in HeLa cells and identified 286 required for processing, including 74 without a yeast homolog. For selected candidates, we demonstrated that pre-rRNA processing defects are conserved in different cell types (including primary cells), defects are not due to activation of a p53-dependent nucleolar tumor surveillance pathway, and they precede cell-cycle arrest and apoptosis. We also investigated the exosome’s role in processing internal transcribed spacers (ITSs) and report that 3’ end maturation of 18S rRNA involves EXOSC10/Rrp6, a yeast ITS2 processing factor. We conclude that human cells adopt unique strategies and recruit distinct trans-acting factors to carry out essential processing steps, posing fundamental implications for understanding ribosomopathies at the molecular level and developing effective therapeutic agents.

INTRODUCTION

The nucleolus is a prominent nuclear organelle, central to gene expression, in which ribosome synthesis is initiated (Boisvert et al., 2007). Ribosome synthesis is fundamental to all life forms, and the sequences of mature ribosomal RNAs (rRNAs) and the overall structure of the ribosome are evolutionarily conserved. The nucleolus is a potent biomarker of cellular health; alterations in morphology and protein content are indicators of changes in cell growth and proliferation, cell-cycle regulation and senescence, as well as stress responses and cancer (Boulon et al., 2010; Ruggero and Pandolfi, 2003). A class of human diseases was recently designated as ribosomopathies; these are inherited or somatically acquired human syndromes characterized by impaired hematopoiesis and increased cancer susceptibility. They are associated with mutations in genes encoding ribosomal components, typically leading to haploinsufficiency of ribosomal proteins, or mutations in ribosome assembly factors. Ribosomopathies include Diamond-Blackfan anemia (DBA), Schwachman-Diamond and Treacher Collins syndromes, X-linked dyskeratosis congenita (X-DC), T cell acute lymphoblastic leukemia, and isolated congenital asplenia, among others (Farrar et al., 2011; Johnson and Ellis, 2011; Narla and Ebert, 2011; De Keersmaecker et al., 2013; Bolze et al., 2013).

The nucleolus is not membrane bound and can adopt an extremely dynamic structure; nucleolar morphology may vary greatly depending on the growth conditions and physiological status of the cell (Dimario, 2004). Several years ago, plant and mammalian nucleoli were purified, and their protein content was established by mass spectrometry (Andersen et al., 2002; Pendle et al., 2005; Scherl et al., 2002). The initial analysis in HeLa cells revealed that the nucleolus contains ~700 abundant proteins (compared to ~150 nucleolar proteins identified in budding yeast, based on high-throughput localization of GFP fusions; Huh et al., 2003). With the increased sensitivity of mass spectrometry techniques, this estimate was raised to ~4,500 putative nucleolar proteins (Ahmad et al., 2009). The mammalian nucleolar proteome was first established under a near-physiological state, and it was later analyzed under stress conditions such as drug-induced transcriptional shutdown, adenovirus infection, and UV and ionizing irradiation (Andersen et al., 2005; Lam et al., 2010; Moore et al., 2011). These studies demonstrated the highly fluctuating nature of the nucleolar proteome, confirming the results from earlier light microscopy studies (Olson and Dundr, 2005; Phair and Misteli, 2000).

Four rRNAs lay at the core of the eukaryotic ribosome, three of which are produced by the extensive processing of a polycistronic rRNA transcript (47S in humans), synthesized by RNA polymerase (Pol) I (reviewed in Mullineux and Lafontaine, 2012). The 5S rRNA, part of the large ribosomal subunit, is transcribed separately by RNA Pol III. In human cells, processing of the 47S primary transcript follows one of two pathways (Figure S1 available online) and encompasses numerous cleavage reactions to remove external and internal spacers. Pre-rRNA processing is only one of the many facets of ribosome synthesis; however, it is highly integrated with other steps, such as covalent modification of ribosomal components and binding of ribosome.
assembly factors and ribosomal proteins (Lafontaine, 2010). Pre-rRNA maturation involves the sequential generation of intermediate RNA species, many of which are readily detectable by high-resolution northern blots. Ribosome biogenesis entails maturation steps in the nucleolus, nucleoplasm, and cytoplasm, where final processing of both the small and large ribosomal subunit rRNAs occurs. Analysis of pre-rRNA processing, therefore, provides a straightforward and well-resolved readout, both temporally and spatially, of ribosome synthesis.

In an effort to better understand ribosome synthesis in humans, we characterized the role in pre-rRNA processing of a selection of 625 putative nucleolar proteins in HeLa cells, identifying 286 pre-rRNA processing factors, including 74 without a yeast homolog. For a selection of candidates, we show that the pre-rRNA processing defects observed are remarkably similar in different cell types, including primary cells, that they are not p53-dependent, and that they largely precede other cellular phenotypes, such as cell-cycle arrest and programmed cell death. For many years, ribosome research in mammals has lagged behind that of budding yeast. This is largely because yeast genetics (e.g., synthetic lethality and suppressor screens) have either distinct or additional functions in pre-rRNA processing (data not shown). We provide initial, but compelling, evidence that calls this concept into question:

RESULTS

Rationale of the Screening Procedure

Based on the nucleolar proteomes recently described in humans, bovine, and plants, we assembled a list of genes with putative functions in pre-rRNA processing and experimentally tested 625 candidates in HeLa cells (Table S1). The messenger RNA (mRNA) for each was depleted over 3 days with one of three siRNAs (Table S1). The reiterative controls of the calibration set, representing 1,875 siRNA depletions (excluding controls), was assembled into a matrix and integrated with a clustering software (see www.ribogenesis.com and Experimental Procedures). Proteins whose depletion produced similar patterns of accumulation or reduction of pre-rRNA precursors ("pre-rRNA profile") were automatically clustered. We designated specific functional classes on the basis of the observed patterns (Figure 2A). The reiterative controls of the calibration set, repeated >50 times, reproducibly clustered in the same groups (data not shown).

Functional Clustering and Emerging Classes of Ribosome Synthesis trans-Acting Factors

In order to assess the efficiency of siRNA-mediated depletions, we determined the relative levels of residual mRNAs for selected siRNAs using a shotgun quantitative PCR (qPCR) approach (Figure S2). We tested 154 siRNAs, ~8% of all inactivations, and found that the level of residual targeted mRNA was <20% for 84 siRNAs tested, 20%–40% for 49 siRNAs, and 40%–60% for 16 siRNAs. Out of the 26 genes in the qPCR assay for which we tested three siRNAs, we found that for two genes only one of the siRNAs failed to efficiently deplete the target mRNA (NIPBL and NOP58, Figure S2A).

We defined 12 functional classes of assembly factors based on the clustering of the pre-rRNA profiles of depleted proteins (Figure 2A and Tables 1 and S2). Of the 625 proteins analyzed, 70 showed an identical or very similar pre-rRNA profile upon mRNA depletion with all three siRNAs (Table 1). An additional 216 proteins showed an identical or similar profile upon depletion with two of the three siRNAs. Table 1 lists the 286 proteins identified as being strongly required for pre-rRNA processing. These are characterized by a >1.5-fold increase or decrease of at least one of the intermediates. For proteins already described in the literature, we have largely confirmed and extended previously reported phenotypes (Table S10).

Of the 286 proteins, 153 have a yeast homolog known to be a ribosome biogenesis factor, 59 have a yeast homolog not
directly linked to ribosome synthesis, and 74 have no obvious yeast homolog (Figure 2B and Tables S3 and S4). Strikingly, many human genes (109/286 genes, 38%) identified in our screen as ribosome assembly factors are also known disease biomarkers, notably in cancer (Figure 2C and Table S5). Several noteworthy examples include WDR36, mutated in open-angle glaucoma (Fan et al., 2009); SIRT7, overexpressed in breast cancer (Ashraf et al., 2006); NOL7, downregulated in cervical cancer (Hasina et al., 2006); RPF1, mutated in nephroblastoma (Perotti et al., 2004); CDKN2A (p14ARF), linked to the p53 pathway (Ozenne et al., 2010); and GLTSCR2/PICT1, a proto-oncogene (Sasaki et al., 2011). The distributions of ribosome synthesis factors involved in early, intermediate, or late pre-rRNA processing steps, and whether or not they exert a similar function as their yeast counterpart, are shown in Figures 2D and 2E, respectively (Table S6). Given the abundance of the nucleolar proteome, it is not surprising that close to 75% of the factors identified are involved in early pre-rRNA processing and its role in ribosome synthesis.
steps since they occur in the nucleolus. Approximately 73% (83 genes) of the human proteins have a function similar to that of their yeast homolog, while the rest have either additional (13.5%) or alternative (13.5%) functions (Figure 2E and Table S6). These observations clearly indicate that ribosome synthesis is far more complex in mammals than was anticipated based on yeast models.

Identification of Human Pre-rRNA Processing Factors

We selected 11 human genes without an obvious yeast homolog and characterized their involvement in pre-rRNA processing in more detail (Figure S3A and Supplemental Experimental Procedures). They are presented in Figure S3A from left to right according to their involvement in early-to-late steps of processing. Most of the genes are implicated in disease.

Figure 2. Functional Classes of Human Pre-rRNA Processing Factors

(A) Gene products whose depletion led to a similar pattern of accumulation and/or reduction of pre-rRNAs were grouped into 12 classes (see www.ribogenesis.com for details). The heatmap shows prototypic alterations of the patterns in each class. In this table and on the website, the 45S formally refers to 47S/45S. Key: red, increased-abundance RNAs; blue, decreased-abundance RNAs. The color code expresses the percentage of each RNA with respect to the SCR. The number of genes in each class and examples are indicated (not included: 83 genes defining a miscellaneous family. See Table 1 for details).

(B and C) Venn diagrams showing the distribution of the 286 genes identified as human pre-rRNA processing factors (depletion leads to a >1.5-fold change of at least one pre-rRNA species) into three classes based on the presence or absence of ribosomal processing activity in yeast homologs (B) and their connection to diseases (C).

(D and E) Venn diagrams showing the distribution of the 189 genes identified as human pre-rRNA processing factors (depletion leads to a >2.5-fold change of at least one pre-rRNA species) according to its involvement in early pre-rRNA processing (cleavage at sites 01, A0, and 1), the synthesis of the small (pre-40S) or the large (pre-60S) subunits (D), and functional conservation between 113 human genes and their yeast homologs (E). See also Figure S2 and Tables S2–S6, S9, and S10.
encoding a p53-regulated nuclear RNA-binding dual specificity phosphatase, and SF3B14 were recently studied in the context of chronic inflammatory disease (Caprara et al., 2009; Deshpande et al., 1999; Häslar et al., 2011; Yuan et al., 1998). NOL7 is a cervical carcinoma biomarker (Hasina et al., 2006; Huang et al., 2012). THYN1 has been linked to the Jacobsen haploinsufficiency syndrome (Ji et al., 2010). NOP16 is a c-Myc-regulated breast cancer marker (Butt et al., 2008). SRFBP1 is implicated in

<table>
<thead>
<tr>
<th>Class</th>
<th>Phenotype</th>
<th>Number of Genes</th>
<th>Three siRNAs</th>
<th>Two siRNAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>47S down, 45S down, 41S down</td>
<td>67</td>
<td>DDX42, EIF2S3, ISG20L2, KRT18, NCL, NO66, POLR1A, POLR1B, PRDX1, SMC5, UBTB, UTP15</td>
<td>ARPC4, BLM, BUB3, C1orf107, C22orf28, CCDC59, CDC48, CPSF7, CSTF1, Cxorf56, DDX24, DDX31, DDX51, DHX5, DHX8, DNAJC8, EEF1G, EIF2K2, EIF4A3, EMG1, ESF1, EXOSC8, FEN1, FRG1, HNRNPF, HP1BP3, LUC7L2, MBD3, NOSP1, NPM3, NSUN5, PA2G4, PARN, PELP1, PIN4, POLR2E, PRPF19, RBM4B, RCC2, RPP14, RNR13, SENP3, SEPT2, SERBP1, SFRS3, SNRP200, TCOF1, TLE1, TOP2A, TTF1, TUFM, TWIST1N, UBE2I, ZC3H1, ZNF638</td>
</tr>
<tr>
<td>2</td>
<td>47S up, 34S up, 30S up</td>
<td>51</td>
<td>CIRH1A, DDB1, DDX41, DUSP11, EXOSC6, FBL, HNRNPC, LSM6, NGDN, NOL6, NOP14, NOP56, PLRG1, PWP2, RRP9, RUVBL1, TBL3, XRN2</td>
<td>AATF, ABT1, BMS1, CDC5L, DDX10, DDX47, DDX49, DNTTIP2, FCF1, HEATR1, HNRNP, IMP3, IMF4, KRR1, MED21, NPP2L1, NOC4L, NOL10, NOL7, NOM1, NOP58, RCL1, RIOK3, RPS15, SF3B14, SRFBP1, UTP11L, UTP18, UTP20, WDR3, WDR36, WDR43, ZNHIT6</td>
</tr>
<tr>
<td>3</td>
<td>47S up, 45S up, 41S up</td>
<td>4</td>
<td>DDX1B</td>
<td>EIF2S2, GSTCD, RBM19</td>
</tr>
<tr>
<td>4</td>
<td>41S up, 30S down, 21S down, 18S-E up, 12S down</td>
<td>22</td>
<td>BOP1, BRIX1, CSNK1E, GTPBP4, MAK16, NOL9, RRP1, RRP15, RSL1D1, WDR74</td>
<td>CEPB2, DDX27, EBNA1BP2, EEF1A1, FTSJ2, MKI67IP NOC2L, NOP16, NSA2, PCNA, PES1, PRKDC</td>
</tr>
<tr>
<td>5</td>
<td>34S up, 26S down, 18S-E down</td>
<td>7</td>
<td>PRPF8</td>
<td>DHX33, HNRNPL, POLR2H, RBP4, TOP1, WDR75</td>
</tr>
<tr>
<td>6</td>
<td>26S up</td>
<td>8</td>
<td>DKL1, PNO1, SKIV2L, SKIV2L2</td>
<td>ARPC1A, BSNK1D, EXOSC10, EXOSC7</td>
</tr>
<tr>
<td>7</td>
<td>21S down, 18S-E down</td>
<td>3</td>
<td>DDX37, RRP12</td>
<td>ZCCHC9</td>
</tr>
<tr>
<td>8</td>
<td>21S down, 18S-E down</td>
<td>8</td>
<td>DDX18, MPHOSPH10, WDR46</td>
<td>DDX52, PDCD11, RPP7A, UTP14A, UTP6</td>
</tr>
<tr>
<td>9</td>
<td>21S up</td>
<td>6</td>
<td>KRT7, LTE1</td>
<td>APEX1, CDK7, RPP40, RPS3</td>
</tr>
<tr>
<td>10</td>
<td>18S-E down</td>
<td>3</td>
<td>WBSRC22</td>
<td>RPF1, TSR2</td>
</tr>
<tr>
<td>11</td>
<td>47S up, 32S up</td>
<td>21</td>
<td>CDK2NA, DDX5, GLTSCR2, SPATA5A</td>
<td>C4orf43, EFTUD2, EXOSC2, GNL2, HNRNPD, MYBBP1A, NCAPG2, NPM1, PAK1P1, PPIB, RRS1, SAD1, SF3A3, SNRP2D, SRPK1, SUV98H1, THYN1</td>
</tr>
<tr>
<td>12</td>
<td>12S up</td>
<td>3</td>
<td>EXOSC5</td>
<td>MPHOSPH6, RING1</td>
</tr>
<tr>
<td>13</td>
<td>miscellaneous</td>
<td>83</td>
<td>FARS3, ILF3, KIF2C, KPNA3, LASL1, MRE11A, RBM34, RFC4, TGS1, UTP14C, XPO1</td>
<td>ABCF2, ACTG1, BCAS2, BCCIP, C1orf21, C20orf132, C8orf59, C8orf114, CBX3, CCAR1, CCT2, CD99, CENPB, COIL, CSN2A1, DDX54, DEK, DHX15, DNAJC21, DDM3Z, DYRK1B, EEF1A2, EFTUD1, EIF5A, EWSR1, EXOSC1, FABP5, FAM120B, FAM98B, FLNA, FTSJ3, GRSF1, GTPBP5, HMGN4, HNRNPR, HNF16, KRI1, LGS1, MDN1, MRTOL, NAT1, NHP2, NKF1, NOB1, NOC3L, NSUN2, PHF6, PINX1, PPIA, PRPF3, RFC3, RNF40, RRP38, RPSA, RTCD1, RUVBL2, SETX, SFRS1, SFRS5, SIRT7, SPTY2D1, SUB1, TCEB3, TCEG1, TOPBP1, TRMT112, TRMT1L, TRMT6, TRSN1, VRK1, WDR12, ZFP106</td>
</tr>
</tbody>
</table>

The table indicates whether two or three siRNAs generated the same or highly similar pre-rRNA profiles. Unless stated otherwise, there is a reduction or accumulation of >2.5-fold of at least one pre-rRNA species tested.

aReduction or accumulation of >2-fold.
bReduction or accumulation of >1.5-fold.
cardiac cellular metabolism and aging (Zhang et al., 2008; Zhang et al., 2004). RRP7A and SF3B14 are involved in mammalian blastocyst formation and embryo preimplantation (Maserati et al., 2012). NGDN is a colon cancer-associated gene (Park et al., 2011). SFRS3 is proto-oncogene and cancer biomarker diagnostic of early tumorigenesis stages (Jia et al., 2010). Finally, ZCCHC9 is a nuclear protein with weak homology to the RNA exosome cofactors Air1 and Air2 (Sanudo et al., 2011). No information was available on C8orf59. In addition to establishing the effects of the depletion of these 11 proteins on pre-rRNA processing, we tested whether any is essential for the maintenance of nucleolar structure and found that none are required (Figure S4 and data not shown).

As further proof of concept, we show the detailed characterization of 39 human genes with yeast processing factor homologs, presented in Figures S3B and S3C from left to right according to their involvement in early-to-late processing steps.

Pre-rRNA Processing Phenotypes Are Conserved in Different Cell Types and Are Not p53 Dependent

We were interested to know whether the pre-rRNA processing phenotypes observed in HeLa cells are conserved in other cell types. We repeated our analysis in primary human fibroblasts (WI-38), testing seven genes without a yeast homolog (DUSP11, NOL7, NOP16, SRFBP1, RRP7A, NGDN, and ZCCHC9), eight with a yeast ortholog involved in ribosome synthesis (MKI67P, PWP2, BMS1, PNO1, LT1V, RRP12, GLTSCR2, and GNL2), and six RNA exosome subunits and cofactors (Figures 3 and S6B). WI-38 and HeLa cells exhibit similar pre-rRNA processing phenotypes (compare Figures 3 and S3). A nuclear p53-dependent tumor surveillance pathway has been described in which insults to ribosome assembly lead to the capture and titration of HDM2 by free unassembled ribosomal components, causing p53 stabilization, G1 cell-cycle arrest, and eventually, cell death (Chakraborty et al., 2011). To clarify whether or not processing defects are the consequence of nucleolar surveillance, the same 21 genes were disrupted in paired human colon carcinoma cell lines (HCT116 p53+/+, producing p53; HCT116 p53−/−, no p53), and pre-rRNA profiles were compared (Figures 4 and S6B). Pre-rRNA processing defects observed in HCT116 in the presence or in the absence of
p53 are virtually identical indicating these processing inhibitions are not p53-dependent. Importantly, this demonstrates the observed phenotypes are not due to the activation of a p53-dependent nucleolar tumor surveillance pathway, known as the "nucleolar stress" response. We also conclude the phenotypes reported in WI-38, HeLa and HCT116 are highly conserved. A detailed description of the processing defects for the set of representative genes is provided in the Supplemental Experimental Procedures. Interestingly, extended forms of 32S (36S and 36S-C), typically detected in patients with DBA-harboring mutations in RPL26 (see Figure S3A, section IV, lane 1, and Gazda et al., 2012), accumulate in HCT116 cells lacking NOP16 and MKI67IP (Figure 4, section IV, lanes 4, 12, 18, and 27). Notably, this subtle phenotype is conserved in all cell types tested (HeLa, WI-38, HCT116 p53+/+, and HCT116 p53−/−; Figures 3, 4, and S3). Both NOP16- and RPL26-depleted HeLa and WI-38 cells accumulate more of the long form than of the short form of 5.8S, possibly as a direct consequence of this ITS1 processing defect (Figure S3A, section VII, lanes 1 and 9, and data not shown).

The Pre-rRNA Processing Defects Are Early Events Preceding Cell-Cycle Arrest and Apoptosis

We established the kinetics of processing inhibitions with respect to other cellular processes, such as cell-cycle defects and apoptosis (Figures 5 and S5). A time course analysis was performed on p53+/+ and p53−/− HCT116 cells treated with a siRNA specific to the target gene. Total RNA was extracted from HCT116 cells treated for 3 days with a siRNA and subjected to northern blotting. The siRNA sequences (#1 to #3) are listed in Table S7. The western blot (inset) shows the p53 status of the two cell lines used (β-actin was used as a loading control).
done in HCT116 p53+/+ cells depleted of proteins identified in this study as processing factors (NGDN, NOL7, NOP16, and RRP7A), as well as four with a yeast homolog identified as a processing factor (UTP18, LAS1L, GLTSCR2, and RRP12). We collected readouts at 12, 24, 48, and 72 hr after depletion and analyzed pre-rRNA processing (northern blot; Figures 5A and S5), mature rRNA ratio (Agilent Technologies Bioanalyzer capture; Figure 5B), G1-S cell-cycle arrest (fluorescence-activated cell sorting [FACS] analysis; Figure 5C), relative p53 steady-state accumulation (quantitative western blot; Figure 5D), and apoptosis levels (TUNEL, caspase-3/caspase-7 activation, and Annexin V assays; Figure 5E and data not shown). The data clearly indicate that the processing inhibitions are early defects that are observed as early as 24 hr after depletion for all genes, and even as soon as 12 hr for UTP18 and NOL7 (Figure S5), and largely precede the other phenotypes inspected (see

Figure 5. Pre-rRNA Processing Inhibitions Are Early Defects that Precede Cell-Cycle Arrest and Apoptosis

p53-positive HCT116 cells were treated with siRNAs against the indicated genes, and readouts were collected at 12, 24, 48, and 72 hr after depletion. Lipofectamine (Lipo) treatment and SCR siRNA controls were included. Additional controls were cells treated with 1 μM camptothecin (a DNA topoisomerase inhibitor and genotoxic stress inducer) or siRNAs specific to KIF11 (blocks mitosis).

(A) Pre-rRNA processing phenotype established by northern blot hybridization at 24 hr. For each gene, a star highlights a pre-rRNA species diagnostic of the inhibition. See Figure S5 for a complete time course analysis.

(B) Mature rRNA ratio determined by Agilent bioanalyzer capture.

(C) Cell-cycle analysis by FACS. Cells stained with propidium iodide. Signals normalized to SCR. Data are means ± SD of experimental triplicates.

(D) Relative ratio of p53 steady-state accumulation established by quantitative western blot (normalized to β-actin).

(E) Apoptosis level by TUNEL assay. Inset shows representative FACS profiles at 72 hr.

(F) Timeline of the onsets of the different phenotypes analyzed. See also Figure S5.
Indeed, alterations in the mature rRNA ratio and G1-S arrest were only visible at 48 hr, while p53 stabilization was apparent at 72 hr. Apoptosis was barely detected and only after 72 hr (e.g., NOL7; Figure 5E). In conclusion, processing defects largely precede cell-cycle defects and apoptosis in the target genes examined.

Involvement of the Human RNA Exosome in 5.8S rRNA 3' End Formation

A surprising observation from this work is that several human gene products have acquired additional or even unique functions in pre-rRNA processing as compared to their yeast homologs (Figure 2E). This is illustrated through the detailed functional characterization of the role of the RNA exosome in ITS1 and ITS2 processing.

In budding yeast, formation of the 3' end of the 5.8S rRNA, following an initial cleavage in ITS2, involves a complex succession of 3'-5' exoribonucleolytic digestion by specific RNA exosome subunits (Thomson and Tollervey, 2010 and references therein). We recently provided strong evidence showing that this central biological pathway is evolutionarily conserved and demonstrated highly coordinated communication between processing at the 5' and 3' ends of 5.8S rRNA (Schillewaert et al., 2012).

To further characterize ITS2 processing in HeLa cells, we systematically depleted the core exosome subunits and several coactivators (Figure 6). We found a distinctly different requirement for the exosome subunits in trimming 3'-extended 5.8S precursors. The most notable effects were seen on the accumulation of an ~190 nt extended version of 5.8S rRNA, that is detected with probe LD2079, but not LD1828. The 7SL hybridization serves as a loading control. Each band was quantitated with a phosphorimager and converted into a heatmap. Key: see color code. The siRNA sequences (#1 to #3) are listed in Table S7.
rRNA, the 7S pre-rRNA (migrating at 340 nt), and an ~40 nt extended form (migrating at 190 nt) (Figures 6A and 6B). The 7S pre-rRNA strongly accumulated in cells depleted for some (EXOSC2, EXOSC5 to EXOSC10, MPHOSPH6, and SKIV2L2), but oddly, not for other (EXOSC1, EXOSC3, EXOSC4, C1D, and DiS3) exosome components. A doublet migrating just below the 7S was also more abundant only in the absence of EXOSC10, MPHOSPH6, and SKIV2L2 (Figure 6A, sections II and III, lanes 11, 14, and 15). A shorter precursor extended by ~40 nt was only detected in cells lacking EXOSC10 (Figure 6, section II, lane 11). This latter species is likely equivalent to the 5.8S + 30 pre-rRNA that accumulates in yeast cells lacking Rrp6 (yeast EXOSC10) (Briggs et al., 1998).

To ascertain that the distinctly different requirement of exosome subunits and cofactors is not simply the consequence of differential depletion efficiency, we repeated the analysis on six representative subunits and established the residual protein level by western blotting. Under our depletion conditions, we found that the protein levels of the subunits fell nearly to the detection level, yet the processing phenotypes were indeed markedly different (Figure S6A).

This analysis was repeated on the same representative exosome subunits and cofactors in other cell types (Figure S6B). In HCT116 p53−/− and HCT116 p53−/−, the phenotypes were similar to those observed in HeLa cells (Figure S6B), again demonstrating that they are not p53 dependent. In primary human lung fibroblasts (WI-38) and primary human umbilical vein endothelial cells (HUVECs), the effects of depleting exosome subunits on ITS2 processing were milder, but the trends observed in HeLa and HCT116 cells were conserved. In particular, the roles of EXOSC10 and SKIV2L2 in 5.8S + 40 and 7S maturation, respectively, were similar (Figure S6B, lanes 5 and 7).

Recently, we discussed that the 18S-E pre-rRNA, an intermediate in the formation of the 18S rRNA (Rouquette et al., 2005), sometimes appears as a fuzzy band on a gel rather than as a discrete one (Mullineux and Lafontaine, 2012). We speculated that this might be because the 18S-E corresponds to a population of RNAs with heterogeneous 3′ ends resulting from exoribonucleolytic trimming of the 21S pre-rRNA, with the 21S-C representing a major intermediate (Figure S1). Consistent with this idea, in the high-molecular-weight RNA analysis of the exosome subunits, we noted that cells depleted for EXOSC10 significantly accumulated the 21S-C (Figure 6C, lane 11). This was also seen with some (EXOSC2, EXOSC5, EXOSC7), but not all, core RNA exosome subunits and with one of its coactivators (SKIV2L2). The data indicate that, unexpectedly, EXOSC10 is also involved in the final trimming of the 18S rRNA. This is in contrast to the situation described in budding yeast, in which Rrp6 is primarily involved in ITS2 processing to generate the 3′ end of 5.8S rRNA but has no known functions in ITS1 processing (Schillevaet et al., 2012 and references therein). We conclude that while the overall architecture of pre-rRNA processing pathways seems to have been well conserved throughout evolution, budding yeast and human cells have adopted different strategies and trans-acting factors to perform unique reactions.

DISCUSSION

The emergence of ribosomopathies calls for a deeper understanding of ribosome synthesis in humans. We tested 625 human nucleolar proteins for effects on pre-rRNA processing, a decisive step in ribosome synthesis. We identified 286 factors involved in ribosome biogenesis and generated an online, fully searchable, and information-rich database (Figures 1 and 2, Table S2, and www.ribogenesis.com). Approximately 38% of the genes tested in our study have been linked to diseases, mainly cancer (Figure 2C and Table S5), clearly pointing at a connection between defective ribosome synthesis and disease. This further enhances the need for more detailed studies on human ribosome biogenesis. A large fraction of the nucleolar proteome (339 factors) examined was not required for pre-rRNA processing, which likely reflects proteins involved in extranucleolar functions (Boisvert et al., 2007).

We examined the involvement of 39 human genes in pre-rRNA processing in greater detail; these genes were selected because their yeast homologs are known assembly factors. Nearly 73% carry out RNA cleavage steps similar to their yeast counterparts (Figures S3B and S3C and Table S6), highlighting the evolutionary conservation of key processing steps across eukaryotes. We also characterized 11 disease-related human genes without yeast homologs and showed that they impact distinct steps in the pre-rRNA processing pathway (Figure S3A). This observation supports the notion that expansion of the primary rRNA transcript (13.3 kb in humans versus 6.7 kb in budding yeast) and subsequent emergence of cleavage sites necessitated the recruitment of additional processing factors to catalyze cleavage reactions. These genes belong to a group of 74 members that were previously eluded identification using homology-based methods. Incidentally, we report that among the human proteins identified, 59 have a yeast homolog that has not been examined for a role in ribosome synthesis. Significantly, these include putative methyltransferases, protein modification enzymes, and structural cellular components, as well as gene products involved in translation, pre-mRNA splicing, or DNA replication. These are all cellular processes recently shown to share highly specific trans-acting factors with ribosome synthesis. At the time of our analysis, Trm112 belonged to that group but has since been described as a coactivator of the 18S rRNA methyltransferase Bud23 (Figaro et al., 2012; Sardana and Johnson, 2012), making it likely that additional yeast ribosome assembly factors will emerge from this group of genes in the future.

We analyzed 21 genes in other cell types (WI-38, HUVEC, HCT116), including primary cells; the pre-rRNA processing phenotypes observed in HeLa are globally well conserved (Figures 3, 4, and S6B). We also showed that the processing inhibitions are not p53 dependent, indicating importantly that they are not simply the consequence of the activation of a p53-dependent nucleolar tumor surveillance pathway.

Clearly, the large diversity of pre-rRNA processing phenotypes observed in different cell types is evidence that the proteins described in this work are bona fide ribosomal processing factors. To lend additional support to the idea that the proteins identified here are directly involved in ribosome synthesis, we established the kinetics of pre-rRNA processing defects with
respect to other cellular processes, concluding that the cleavage defects precede cell-cycle arrest and apoptosis by at least 24 hr, and even by 36 hr in some cases (Figure 5).

An important biological insight derived from the analysis of our data set is that while many gene products identified in our screen have functions similar to those of their yeast counterpart, around 27% carry additional or even unique functions in pre-rRNA processing (Figure 2E and Table S6). This conclusion will surely impact the manner in which ribosome biogenesis is studied, as it demonstrates that molecular studies of ribosomopathies in the yeast model is no longer sufficient and that the focus must be directed to human cell lines to achieve therapeutic advances. As an example of this, we provided the detailed analysis of the RNA exosome in the processing of the internal transcribed spacers. We demonstrated that the exosome-dependent processing of ITS2 is conserved in different cell types and independent of p53 (Figure S6B). We also showed that the human RNA exosome is involved not only in ITS2 processing, similar to yeast, but also in ITS1 maturation (Figure 6).

The involvement of ZCCHC9, the putative homolog of the exosome cofactor Acr1/Air2, in the maturation of the ITS pre-rRNA further strengthens the case for the exosome having a function in ITS1 processing in humans (Figures 3, 4, and S3A). The role of the human RNA exosome in ITS1 processing received additional experimental support in a recent independent study (Sloan et al., 2013).

Many genes identified as pre-rRNA processing factors are connected with disease, particularly cancer. Defects in ribosome synthesis can alter ribosome quantity and quality, which immediately impact translation. There is mounting evidence for intimate connections between deregulation of translational control and oncogenic pathways promoting cellular transformation and tumor development (Ruggero, 2013). In the context of ribosome biogenesis, a reduction in functional ribosomes affects the overall protein synthesis capacity of a cell. This clearly poses significant physiological consequences in cell differentiation pathways (e.g., hematopoiesis) at specific steps where the demand in active ribosomes is likely to be especially high (translational bottleneck). The different facets of ribosome biogenesis are highly integrated such that changes in processing kinetics could readily influence rRNA modification patterns. Alterations in ribosome quality (e.g., missing or differentially modified components) also impact the reprogramming of the translational landscape of a cell, with cell- and/or tissue-context-specific pathophysiologic consequences (Bellido et al., 2013; Higashimori et al., 2012). In particular, RNA modification has been shown to impact the translation of specific internal ribosome entry site (IRES)-containing mRNAs (Basu et al., 2011; Belin et al., 2009; Jack et al., 2011), which include key tumor suppressors such as p53.

It is also worth noting that in addition to the RNA species, which were systematically investigated for all the genes tested, we identified aberrant rRNA fragments (see www.ribogenesis.com for details). For example, we found that depletion of several late pre-40S assembly factors, such as DIMT1L, DHX37, TSR1, and WBSCR22, led to the accumulation of truncated forms of the 18S-E precursor. This points to a role for these factors in quality control mechanisms, which will require further investigation.

In conclusion, we suggest that despite global conservation in pre-rRNA processing pathways, pre-rRNA intermediates, and processing factors between ancient and modern eukaryotes, plasticity exists and mammals have evolved and adapted distinct cleavage strategies, partially based on the components initially present in deeply rooted eukaryotes.

We hope our database will serve as a key reference data set and fundamental resource to the scientific community, providing useful insights into human disease research and triggering dedicated studies on specific human genes with a ribosome synthesis perspective. Moreover, we have provided powerful evidence showing that pre-rRNA processing is far more complex in humans than previously assumed, created a valuable resource for those investigating ribosomopathies, and identified potentially important biomarkers for malfunctions in ribosome synthesis.

EXPERIMENTAL PROCEDURES

Cell Culture

Cells were grown at 37°C in a humidified incubator with 5% CO2 in the following media: HeLa (NIH AIDS REF-153), Dubecco’s modified Eagle’s medium (DMEM, Sigma D6429)/10% fetal bovine serum (FBS; A&E Scientific); WI-38 cells (ATCC CCL-75), minimal essential medium (MEM; ATCC, 30-2003)/10% FBS; HUVEC (ATCC PCS-100-010), Medium 200 (Life Technologies, M-200-500), supplemented with Low Serum Growth Supplement (LSGS; Life Technologies, S-003-10); and HCT116 (ATCC CCL-247), McCoy’s 5A (modified) medium (Sigma)/10% FBS. All media were supplemented with 50 U/ml penicillin and 50 μg/ml streptomycin (Life Technologies).

siRNA Inactivation and Total RNA Extraction

All siRNA were purchased from Life Technologies (Silencer Select siRNA). Three unique silencers were designed for each target gene and used in three individual reactions (Table S7). HeLa, WI-38, and HCT116 cells were reverse transfected as follows: 1.5 μl of 20 μM siRNA (10 nM final) and 4 μl Lipofectamine RNAiMAX (Life Technologies) were mixed with 500 μl of Opti-MEM (GIBCO) in each well of a 6-well plate. After a 20 min incubation at room temperature, 1.5 × 105 cells, resuspended in 2.5 ml of medium without antibiotics, were seeded in each well. Inactuations were carried out for 72 hr prior to total RNA extraction. Negative controls were transfected either with a scrambled (SCR) siRNA (4390844) or without siRNA (mock transfected), with similar results. A calibration set (described in Figure 1) was included in each batch of siRNA-mediated depletions. HUVECs were reverse transfected (same protocol) using 2 × 105 cells per well in a 6-well plate, respectively; siRNA sequences for the calibration set (UTP1#1, RPS5#5, RPS11#1, NOL9#1) are listed in Table S7. Total RNA was extracted using the TRI Reagent (Life Technologies) according to the manufacturer’s protocol and analyzed by northern blotting and/or qPCR, as described below.

RNA Electrohoresis

For analysis of high-molecular-weight species, 5 μg of total RNA were resolved on agarose denaturing gels (6% formaldehyde/1.2% agarose in HEPES-EDTA buffer). For low-resolution analysis (screening gels), gels were migrated for 4 hr at 75 V. For higher resolution (Figures 1C, 3, 4, 5, and S1), electrophoresis was carried out for 16 hr at 60 V. For the analysis of the low-molecular-weight RNA species, either 1 μg (for the 7SL loading control) or 5 μg (for the exosome subunit analysis) of total RNA were separated on denaturing acrylamide gels (8% acrylamide-bisacrylamide 19:1/8 M urea in Tris-borate-EDTA buffer [TBE]) for 4 hr at 350 V.

Northern Blotting

Agarose gels were transferred by capillarity overnight in 10× saline sodium citrate (SSC) and acrylamide gels by electrotransfer in 0.5× TBE on nylon membranes (GE Healthcare). Membranes were prehybridized for 1 hr at 65°C in
50% formamide, 5× SSPE, 5× Denhardt’s solution, 1% w/v SDS, 200 μg/ml fish sperm DNA solution (Roche). The 32P-labeled oligonucleotide probe was added and incubated for 1 hr at 65°C and then overnight at 37°C. Sequences of the probes are described in Table S8.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures, six figures, and ten tables and can be found with this article online at http://dx.doi.org/10.1016/j.molcel.2013.08.011.

ACKNOWLEDGMENTS

We acknowledge support from the following: Drs. Catherine Denicourt (University of Texas Health Science Center) for providing the HCT116 cell lines, Nick Watkins (University of Newcastle) for providing antibodies to specific exosome subunits, Daniele Hernandez-Verdun (Institut Jacques Monod, Université Paris Diderot-Paris 7) for cell lines, Benoît Van Driessche (ULB, Molecular Virology) for valuable advice in human cell culture, Nicolas Simonis (ULB, Bioinformatics of Genomes and Networks) for assistance with the use of the clustering software R, Vincent Duheron (ULB, Biology of the Nucleus) for help with FACS analysis, and Emnilian Nicolai (ULB, CMMI) for critical reading. We also acknowledge the insightful comments and suggestions of anonymous reviewers. The lab of D.L.J.L. is funded by the F.R.S./FNRS and FEDER (through involvement in the CMMI).

Received: February 18, 2013
Revised: June 6, 2013
Accepted: July 17, 2013
Published: August 22, 2013

REFERENCES

