GSK3ß, a centre-staged kinase in neuropsychiatric disorders, modulates long term memory by inhibitory phosphorylation at Serine-9

I. Dewachter a, L. Ris b, T. Jaworski a, C.M. Seymour a, A. Kremer a, P. Borghgraef a, H. De Vijver a, E. Godaux b, F. Van Leuven a,⁎

a Experimental Genetics Group, Department Human Genetics, KU Leuven, Campus Gasthuisberg, ON1-box 06.602, Herestraat 49, B-3000 Leuven, Belgium
b Laboratory of Neurosciences, University of Mons-Hainaut, Pentagone Asile 1A, Avenue Champs de Mars, B-7000 Mons, Belgium

A R T I C L E I N F O
Article history:
Received 10 December 2008
Accepted 11 April 2009
Available online 18 April 2009

Keywords:
GSK3ß
Alzheimer’s disease
Neuropsychiatric disorders
Cognition
Synaptic plasticity
Long term potentiation

A B S T R A C T
Accumulating evidence implicates deregulation of GSK3ß as a converging pathological event in Alzheimer’s disease and in neuropsychiatric disorders, including bipolar disorder and schizophrenia. Although these neurological disorders share cognitive dysfunction as a hallmark, the role of GSK3ß in learning and memory remains to be explored in depth. We here report increased phosphorylation of GSK3ß at Serine-9 following cognitive training in two different hippocampus dependent cognitive tasks, i.e. inhibitory avoidance and novel object recognition task. Conversely, transgenic mice expressing the phosphorylation defective mutant GSK3ß[S9A] show impaired memory in these tasks. Furthermore, GSK3ß[S9A] mice displayed impaired hippocampal L-LTP and facilitated LTD. Application of actinomycin, but not anisomycin, mimicked GSK3ß[S9A] induced defects in L-LTP, suggesting that transcriptional activation is affected. This was further supported by decreased expression of the immediate early gene c-Fos, a target gene of CREB. The combined data demonstrate a role for GSK3ß in long term memory formation, by inhibitory phosphorylation at Serine-9. The findings are fundamentally important and relevant in the search for therapeutic strategies in neurological disorders associated with cognitive impairment and deregulated GSK3ß signaling, including AD, bipolar disorder and schizophrenia.

© 2009 Elsevier Inc. All rights reserved.

Introduction

A potential pathological role is emerging for glycogen synthase kinase-3 (GSK3) in the most prevalent neurodegenerative disorder, i.e. Alzheimer’s disease (AD) (Muyllaert et al., 2008; Terwel et al., 2008; Hooper et al., 2008; Small and Duff, 2008). A growing body of evidence implicates GSK3 in other neuropsychiatric disorders, i.e. bipolar disorder, depression, schizophrenia, anxiety disorder (Gould et al., 2004, Guzzetta et al., 2007, Lovestone et al., 2007). While these neurological diseases vary in symptoms, age of onset and systems affected, they share cognitive dysfunction and derangement of thoughts as common feature.

GSK3 is a proline-directed serine/threonine kinase, originally identified as a regulator of glycogen metabolism (Embi et al., 1980). Mammals express two isozymes encoded by different genes (GSK3α and GSK3ß) (Woodgett, 1990) that are inactivated by phosphorylation at S21/S9 respectively, by various protein kinases (Frame and Cohen, 2001). Numerous substrates of GSK3 include transcription factors (e.g. CREB), factors involved in translational control (e.g. elf2 family), metabolic enzymes, cytoskeletal and motor proteins, components involved in cell division and cell adhesion (Frame and Cohen, 2001; Doble and Woodgett, 2003; Jope and Johnson, 2004).

Deregulation of GSK3 is considered important in schizophrenia and bipolar disorder (Lovestone et al., 2007; Gould et al., 2004). Atypical and typical antipsychotic drugs alter GSK-3 activity, as do drugs that induce psychosis. GSK-3 regulatory pathways are altered in these disorders, and associated genes directly or indirectly regulate GSK-3 activity (Lovestone et al., 2007; Gould et al., 2004; Einat and Manji, 2006). Cognitive impairment is considered as a core feature to bipolar disorder and schizophrenia and considered “endophenotypic” in genetic studies (Einat and Manji, 2006; Powell and Miyakawa, 2006). Importantly, functional outcome in schizophrenia and bipolar disorder are correlated to and even predicted by cognitive dysfunction (Green et al., 2006; Burdick et al., 2007; Martinez-Aran et al., 2007). Therapeutic strategies targeting cognitive impairment in schizophrenia and bipolar disorders are gaining ground (Burdick et al., 2007; Martinez-Aran et al., 2007).

GSK3ß is centre-stage in the pathogenesis of Alzheimer’s disease as Tau kinase I phosphorylating Tau at epitopes that mark neurofibrillary tangles (review Muyllaert et al., 2006; Hooper et al., 2008). GSK3ß is associated with neurofibrillary tangles and its activity is increased in brain of AD patients (Leroy et al., 2007). GSK3ß
phosphorylates neuronal Tau in mouse brain in vivo (Spittaels et al., 2000, Lucas et al., 2001, Engel et al., 2006), while its co-expression with TauP301L dramatically aggravates neurofibrillary pathology (Terwel et al., 2008). Finally, in brain of APP transgenic mice GSK3 is activated (Muyllaert et al., 2006; Terwel et al., 2008).

Here we demonstrate a central function for GSK3ß in long term memory by two complementary data-sets: (i) increased phosphorylation at GSK3ß-S9 following cognitive training in hippocampus dependent tasks and (ii) constitutively active GSK3ß[S9A] impaired long term memory in vivo and ex vivo (i.e. late long term potentiation (L-LTP) while facilitating long term depression (LTD)). Additional pharmacological and biochemical evidence suggest an important role for transcriptional regulation by GSK3ß. The combined data imply a crucial function for GSK3ß in long term memory and a role in cognitive dysfunction in GSK3 related neurological disorders.

Materials and methods

Animal housing and behavioral procedures

Adult GSK3ß[S9A] transgenic mice and non-transgenic littermates, age and sex-matched (4–6 months) were used in all experiments. Animals were housed on a 12-hour light/dark cycle in standard animal care facilities and acclimatized in a vivarium at least 6 days prior to behavioral assessment, with access to food and water ad libitum (except for conditioned taste aversion task). All experiments are approved and overseen by the KULeuven Ethical Committee for Animal Welfare (KUL-EC).

Mice

Transgenic mice expressing the phosphorylation defective, constitutively active GSK3ß[S9A] were generated by classical microinjection of its cDNA ligated in the adapted mouse thy1 gene promoter as described (Spittaels et al., 2000). The mouse display increased GSK3ß activity and increased protein Tau phosphorylation (Spittaels et al., 2000, Terwel et al., 2008, Muyllaert et al., 2008). Genotyping was performed on tail biopsy DNA by polymerase chain reaction.

Behavioral testing

Open field test

Mice were placed in a corner of the open field perspex box (52 × 52 × 40 cm) with black vertical walls and translucent floor, dimly illuminated from below. Activity of individual mice over 10 min observation periods was recorded and analyzed by a dedicated computerized system (EthoVision, Noldus, Wageningen, The Netherlands). The open field was divided in virtual sections using dedicated software, i.e. center, periphery, and corner zones, defined by parallel lines 10 cm from the walls. Behavioral parameters that were calculated include total distance traveled, speed, number of entries and residence time in each section.

Light/dark exploration test

The light/dark exploration test was performed by placing the mouse in a cage (52 × 52 × 40 cm) divided into 2 compartments, 1 brightly lit from above and 1 dark. Mice were initially placed in the dark compartment, and observed for 5 min to record the time spent in each section, as well as the number of transitions between dark/light compartments.

Inhibitory avoidance task

On the day of training, mice were transferred to the sound-attenuated room with the IA training apparatus, i.e. a two-chambered box with lit and dark sections, separated by a trap-door. For training, mice were initially placed in the lit side of the box facing a corner opposite the door. After 10 s the trap-door was opened to allow the mouse to enter the dark section, where they received an electric footshock after 2 s (mild stimulation: 0.5 mA; s; strong stimulation 1 mA; 2 s). The mice were allowed 15 s to recover in the dark compartment before being returned to the home cage. At defined intervals after training, the mice were euthanized for analysis, as specified with the results. Retention was assessed by placing mice in the lit section and measuring the latency of re-entry into the dark compartment 24 h after training, with the criterion of all 4 paws present in the dark section of the IA apparatus. The retention index was calculated as the increase in latency after training (100 × (latency in test trial/latency in training trial)). Statistical significance for avoidance retention was determined using a single factor ANOVA, with the criterion for significance at p < 0.05.

Novel object recognition task

The novel object recognition task was essentially performed as described (Dewachter et al., 2002, Rampon et al., 2000, Tang et al., 1999). Briefly, mice were habituated for 10 min in the perspex open field box dimly illuminated from below the box (see above). The following day, mice were observed in the same box for the 8 min acquisition trial in the presence of object A. The time was recorded that the mice explored object A, with as criterion that the snout was directed towards object A at less than 1 cm. The exploration time was used as a measure for explorative behavior of the mouse. The 8 min retention trial was performed 4 h later, by placing the mouse in the box with an additional, novel object B besides the familiar object A. The length of time (tA and tB) that the animal spent exploring both objects was recorded. The retention index (RI) was defined as the ratio of the time spent exploring the novel object over the time spent exploring both objects [(tB / (tA + tB)) × 100]. Statistical analysis was performed by ANOVA single factor as described previously.

Contextual and cued fear conditioning

Contextual and cued fear conditioning was performed in a standard chamber with grid floor connected to electric output device (Med Associates, St. Albans, VT). The training consisted of a single trial, whereby after a 60 s baseline period mice were exposed to 3 tone (CS)-footshock (US) pairings (tone (CS), 30 s, 3000 Hz, 90 dB; footshock (US), 2 s, 0.5 mA; intertrial interval, 2 min; CS and US co-terminated at the end of the training block). Ninety seconds after the first shock, mice were returned to their home-cages. After 24 h, contextual fear conditioning was assessed by returning the mice to the conditioning chamber during a 5 min period. In cued fear conditioning, the conditioning stimulus (CS) (90 dB; 3000 Hz) was presented for 2 min, starting 3 min after the mouse was placed in the novel environment created by covering floor and side-walls with white perspex tiles. Freezing was quantified automatically using video-based conditioned fear testing system (FreezeFrame; Actimetrics, Evanston, IL). Freezing data are presented as percent time spent freezing, i.e. time spent freezing/total time × 100). All data are expressed as mean ± S.E.M.

Conditioned taste aversion

Conditioned taste aversion was performed with mice that were deprived from drinking water ad libitum, but were trained to drink during two daily sessions of 30 min each with a 4-hour interval for 4 days. Water was presented in two identical 15-ml vessels, that were weighed before and after the test as measure of water intake. During the morning session on the conditioning day (day 5) mice were allowed to drink a 0.5% saccharin solution as conditioning stimulus, and 30 min later mice were injected intraperitoneally with LiCl (4.5 mmol/kg) in saline as the nausea-inducing agent as unconditioned stimulus. In the next session after a 2-hour interval, mice were allowed to drink water before being returned to their home cage. During the 30-minute test session, 24 h later, the mice were presented
with two identical vessels with either water or 0.5% saccharin-water solution and the volume of consumed fluid was measured for each, to calculate the aversion index as $V_{\text{water}} / (V_{\text{water}} + V_{\text{saccharin}})$.

Biochemical analysis

At indicated time-points following cognitive training, mice were euthanized rapidly by cervical dislocation, and hippocampi were dissected in the cold. Hippocampi were homogenized in 6 volumes of ice-cold homogenization buffer (25 mM Tris.HCl, 150 mM NaCl, pH 7.6) containing complete protease and phosphatase inhibitor cocktails (1 mM EGTA, 2 mM Na$_3$VO$_4$, 1 μM okadaic acid, 1 mM PMSF) (Terwel et al., 2008) in a Potter–Elvejhem homogenizer with 10 up-and-down strokes of a Teflon pestle rotating at 700 rpm. Protein concentrations were measured using the BCA protein assay. Homogenates were diluted appropriately in sample buffer for SDS-PAGE on 8% polyacrylamide gels (Novex, San Diego, CA). Equal loading was demonstrated by western blotting with anti-tubulin antibody revealing no significant differences between experimental groups (cf. representative blots Fig. 1S M&M). Homogenates of brains of GSK3β[S9A] mice and non-transgenic littermates were prepared with the same procedure. Western blotting was performed as described (Dewachter et al., 2000) using primary antibodies detecting GSK3β (Transduction Laboratories, BD Biosciences, CA), GSK3β phosphorylated at Serine-9 (Cell Signalling, Boston, MA) and c-Fos (Santa-Cruz, CA). Quantitation by densitometric scanning of exposed films was performed on a flatbed optical density scanner and dedicated software (Image Master, GE-Health, Uppsala, Sweden).

Immunohistochemical analysis

Immunohistochemical analysis was performed as described previously (Dewachter et al., 2002). Brains were dissected and the right cerebral hemisphere was immersion fixed in 4% paraformaldehyde in PBS overnight for histological analyses. Immunohistochemistry with anti-NeuN mouse monoclonal antibody (Chemicon/Millipore, MA), anti-CD45 rat antibody (BD Biosciences, CA) and anti-GFAP rabbit polyclonal antibody (DAKO, Haasrode, Belgium) was done on free-floating sagittal vibratome sections using diaminobenzidine as chromogen. Staining with FluorojadeB was performed to monitor neurodegeneration on free-floating sagittal vibratome sections (40 μm) mounted on gelatin-coated glass-slides and air-dried. Dehydration was by passage through a graded series of ethanol (100, 75, 50, and 25%; 5 min each). Sections were washed 2 min in 70% ethanol, followed by 2 min in water, and 2 min incubation in 0.06% potassium permanganate solution. After incubation with Fluorojade B solution (0.0004%) for 10 min, the slides were washed 3 times in water (2 min), dried for 10 min at 50 °C before mounting with Depex.

Electrophysiological measurements

Hippocampal sections (400 μm) were kept and perfused with artificial cerebrospinal fluid (ACSF: 124 mM NaCl, 5 mM KCl, 26 mM NaHCO$_3$, 1.24 mM NaH$_2$PO$_4$, 2.5 mM CaCl$_2$, L3 mM MgSO$_4$, 10 mM glucose) aerated with 95% O$_2$/5% CO$_2$ gas mixture. Sections were placed in the interface recording chamber and kept at 28 °C for 90 min with perfusion with ACSF (1 ml/min). Bipolar twisted nickel-chrome electrodes (50 μm) were used to stimulate Schaffer’s collaterals, while extracellular field excitatory postsynaptic potentials (fEPSP) were recorded in the CA1 stratum radiatum, using low resistance (2–5 MΩ) glass electrodes filled with ACSF. Test stimuli were biphasic (0.08 ms) constant-voltage pulses delivered every minute with intensity adjusted to evoke approximately 40% maximal responses. The slope of the fEPSP was averaged over 4 consecutive responses. LTP was induced either by weak stimulation, i.e. single train of pulses at 100 Hz for 1 s, or by strong stimulation, i.e. 4 trains at 100 Hz of 1 s with 5 min
inhibitory avoidance (IA) paradigm, a rapidly acquired, stable, phosphorylation of GSK3ß-S9 was measured following learning in the at Serine-9

Cognitive training induces inhibitory phosphorylation of GSK3ß

Results

Mean±S.E.M.

Statistical analysis

Data were statistically analyzed using methods of distribution statistics (standard descriptive analysis), analysis of the means (Student t-test) and analysis of variance (ANOVA). A probability of p<0.05 was considered significant. All data are expressed as mean±S.E.M.

Results

Cognitive training induces inhibitory phosphorylation of GSK3ß at Serine-9

To analyze modulation of GSK3ß by cognitive training, phosphorylation of GSK3ß-S9 was measured following learning in the inhibitory avoidance (IA) paradigm, a rapidly acquired, stable, hippocampus dependent type of memory (Whitlock et al., 2006). IA training creates a stable memory trace in a single trial and causes substantial changes in gene expression in CA1, a site of robust synaptic plasticity (Whitlock et al., 2006). Training allowed mice to escape from an illuminated field into a dark chamber where a short electric footshock was delivered, and subsequent context association was allowed for 15 s. Hippocampi of trained and control animals were biochemically analyzed for pS9-GSK3ß, which was increased at 30 and 180 min post-IA-training, relative to naive mice (Fig. 1A). Total GSK3ß protein levels were not significantly altered by training (Fig. 1A, Fig. S1).

We extended this finding to another type of hippocampus dependent memory, i.e. the object recognition test (ORT). Training consisted of 10 min of object exploration, 24 h after the open field exploration. Hippocampi of naive mice, of mice handled without object exposure and of mice trained with an object were biochemically analyzed 30 and 180 min post-training for pS9-GSK3ß and total GSK3ß concentrations. Levels of pS9-GSK3 were significantly increased in hippocampus of trained mice at 180 min post-training relative to naive mice (Fig. 1B), while total GSK3ß concentrations were unchanged.

The data demonstrate that training of mice in hippocampus dependent tasks increased the phosphorylation of hippocampal GSK3ß-S9, a direct biochemical measure of its inhibition.

Inhibitory phosphorylation of GSK3ß is essential for long term memory formation

To further define whether inhibitory phosphorylation of GSK3ß is essential to cognition, we analyzed mice that express the phosphorylation defective mutant, GSK3ß[S9A] (Spittaels et al., 2000) for behavior and in a battery of cognitive tests, i.e. inhibitory avoidance, object recognition, conditioned taste aversion and cued and contextual fear conditioning.

First, explorative behavior, anxiety and locomotion of GSK3ß[S9A] mice were measured during a short time-span (10 min) as in cognitive tests. Open field and light–dark tests revealed no significant differences in explorative, locomotive or anxiety related behavior by following parameters: time spent in different zones, travel speed and number of entries in different zones (Fig. S2 and results not shown).

We next assessed cognitive performance in inhibitory avoidance, known to be hippocampus dependent (Isaacson and Wickelgren, 1962). Inhibitory avoidance memory with a mild stimulation protocol revealed no differences in the retention index between non-transgenic and GSK3ß[S9A] mice. However, non-transgenic mice...
displayed significantly increased latency to enter the dark compartment 24 h post-training, indicating significant memory formation. In contrast, GSK3β[S9A] mice failed to display significant differences in latency 24 h post-training (Fig. 2A) indicating the absence of formation of inhibitory avoidance memory. We then assessed cognitive functioning in the IA task using stronger stimulation. The latency to enter the dark compartment at 24 h post-training was increased approximately 10-fold in non-transgenic mice, but only 3.5 fold in GSK3β[S9A] mice (Fig. 2B). The GSK3β[S9A] mice thereby demonstrated a dramatic impairment of IA memory compared to non-transgenic littermates.

These observations were subsequently extended to a different hippocampus dependent cognitive task based on object recognition. The retenion index, measured 4 h after learning, revealed a significant impairment in GSK3β[S9A] mice compared to non-transgenic, age and sex-matched littermates (Fig. 2D). No differences were observed in explorative behavior (Fig. 2C), nor in retention 1 h after learning (results not shown). These results demonstrate a significant impairment in long term object recognition memory in GSK3β[S9A] mice.

Additional cognitive analysis by cued and contextual fear conditioning tasks and by conditioned taste aversion, revealed no significant differences of GSK3β[S9A] mice relative to non-transgenic, age and sex-matched littermates (Fig. S3). This indicated that mechanisms involved in these tasks are not affected by GSK3β, or alternatively that the learning stimuli of the tests were inadequate to affect GSK3β dependent pathways.

The combined results of the comprehensive set of behavioral experiments demonstrate that GSK3β[S9A] mice suffer a selective impairment of cognitive functions and imply a role for GSK3β in long term memory.

It must be noted that GSK3β[S9A] mice did not display neurodegeneration nor inflammation, assessed by various markers, including staining for NeuN, FluoroJadeB, GFAP and CD45 (Fig. S4), indicating that cognitive defects were not caused by neurodegeneration or inflammation.

Inhibitory phosphorylation of GSK3β bidirectionally modulates synaptic plasticity, impairing L-LTP and facilitating LTD

To further corroborate the role for GSK3β in long term memory, we analyzed GSK3β[S9A] mice and non-transgenic littermates for ex vivo synaptic plasticity, generally considered as the cellular correlate of learning and memory.

Induction of LTP by weak stimulation with a single train as used for early LTP (E-LTP) induced very similar potentiation in non-transgenic and GSK3β[S9A] transgenic mice (Fig. 3B). L-LTP, defined by its dependency on gene transcription and protein translation, was induced by a strong stimulation protocol, i.e. 4 trains interspaced by 5 min, and measured 3 h after induction. L-LTP was significantly impaired in GSK3β[S9A] transgenic mice compared to non-transgenic mice (Fig. 3A).

Basal synaptic transmission and paired pulse facilitation, parameters of presynaptic functioning, were not significantly affected in GSK3β[S9A] mice (Fig. S5). Finally, induction of LTD by low frequency stimulation of Schaffer collaterals, i.e. 900 stimuli at 1 Hz, resulted in significant higher facilitation of LTD in hippocampal slices from GSK3β[S9A] mice, relative to non-transgenic mice (Fig. 3C).

The data indicate that GSK3β is crucially involved in regulating synaptic plasticity, by demonstrating inhibited L-LTP and facilitated LTD in GSK3β[S9A] mice. The synaptic defects correlated spatially-hippocampus- and temporally with the defects in cognition, in the absence of neuronal loss or inflammation.

GSK3β modulates transcriptional regulation involved in late-LTP

To pinpoint the molecular actions involved in inhibition of L-LTP in the GSK3β[S9A] transgenic mice, the effects of GSK3β[S9A] expression were compared with the effects of well-characterized inhibitors of protein translation and transcription, both demonstrated to be essential for L-LTP.

Anisomycin, an inhibitor of translation, rapidly impaired L-LTP in brain sections from non-transgenic mice, which was significantly different from the impairment observed in sections from GSK3β[S9A] mice (results not shown). Addition of actinomycin, a well-known inhibitor of L-LTP by inhibition of transcription, significantly impaired L-LTP in non-transgenic mice at 200 min following tetanic stimulation, a very similar time-point as observed in GSK3β[S9A] mice (Fig. 4A). L-LTP in GSK3β[S9A] mice was not significantly different from non-transgenic mice treated with actinomycin, suggesting modulation of L-LTP by GSK3β by transcriptional regulation.

Finally, to further elaborate the impact of GSK3β[S9A] expression on transcriptional regulation underlying L-LTP, CREB dependent
transcriptional activation was analyzed by measuring c-Fos, an immediate early gene involved in long term memory formation and known target of CREB. Western blotting revealed a significant decrease in the concentration of c-Fos in the brain of GSK3β[S9A] mice compared to non-transgenic mice (n = 5, p<0.05). A representative Western blot is presented in the lower panel.

Discussion

In this work we demonstrate a crucial role of GSK3β in long term memory by inhibitory phosphorylation on Serine-9. To identify the critical involvement of a signaling pathway in long term memory, two criteria need to be fulfilled. First, behavioral training that induces memory should activate the biochemical cascade. Second, blockade within this cascade should interrupt the response. This is unequivocally demonstrated by the fact that hippocampal GSK3β is phosphorylated at Serine-9 following cognitive testing in 2 different hippocampus dependent tasks. Conversely, we demonstrate that blocking phosphorylation of GSK3β at Serine-9 in vivo, impaired long term memory in inhibitory avoidance and object recognition tasks in vivo, i.e. in mice with postnatal neuronal expression of the constitutively active GSK3β[S9A]. Moreover, further analysis revealed impairment of L-LTP, while LTD was facilitated in mice expressing GSK3β[S9A]. Our data demonstrate a role for GSK3β in long term memory by bidirectional modulation of synaptic plasticity.

The current study demonstrates the induction of phosphorylation of GSK3β on S9 following cognitive training in the object recognition test and the passive inhibitory avoidance, one of the most robust cognitive paradigms linked to induction of LTP (Whitlock et al., 2006). Inhibition of GSK3β by phosphorylation on S9 by the Akt kinase is part of a well-documented signaling cascade (Cross et al., 1995). Interestingly, activation of Akt by PI3k occurs following learning and induction of LTP, while blockade of PI3k signaling prevents learning and LTP (Lin et al., 2001, Sanna et al., 2002, Liu et al., 2003). The role for GSK3β in learning and memory demonstrated here, could well depend upstream on regulation by PI3k, with GSK3β as the downstream effector, but other upstream signals are not excluded.

Our data are in line with the only report on the effect of GSK3β expression on memory in vivo, i.e. impaired spatial memory in the water-maze paradigm in transgenic mice conditionally overexpressing GSK3β (Lucas et al., 2001; Hernández et al., 2002). Importantly, those conditional GSK3β mice express the kinase to much higher levels than the GSK3β[S9A] mice used in the current study, resulting in hippocampal neurodegeneration with pronounced gliosis (Lucas et al., 2001). Cognitive deficits might be due to GSK3β expression or alternatively to secondary effects like neuronal loss, neurodegenerative processes or inflammation. The GSK3β[S9A] used in the current study do not display signs of neurodegeneration nor inflammation even at old age.

The role of GSK3β in synaptic plasticity is demonstrated by the impairment of L-LTP, with unaffected E-LTP, associated moreover with facilitated LTD in the mice expressing constitutively active GSK3β. Most recently, GSK3β was proposed to help switch off LTD following induction of LTP, based on pharmacological inhibition of GSK3 (Peineau et al., 2007, 2008). Those data elegantly support the mechanism that is invoked to protect synapses from additional NMDA-receptor dependent input, until the previous information is either consolidated or erased. Independent reports provided indications that GSK3β does affect LTP (Hooper et al., 2007, Zhu et al., 2007).

Our current study significantly extends the data specifically to bidirectional modulation of synaptic plasticity by GSK3β, by the demonstrated inhibition of L-LTP and the facilitation of LTD. The same previous reports demonstrated the role for GSK3β in the induction of LTP using weak stimulation, while we did not. This apparent discrepancy is thought to arise from the fact that the level of activation and inhibition of GSK3β will be critical in its modulation of synaptic plasticity. Conversely, the absence of an effect on E-LTP in our mice allowed us to demonstrate the role of GSK3β on L-LTP and its behavioral correlate long term memory. Interestingly, the different outcomes in models pending on the level of activation of GSK3, may relate to different clinical phenotypes and effects on cognitive phenotypes observed in neurological disorders.

Our analysis of molecular mechanisms underlying the impaired L-LTP points to transcriptional regulation, based on the similarity of the effect of actinomycin, the well-characterized inhibitor of transcription, and the effect of GSK3β[S9A] expression. Furthermore, expression of the immediate early gene c-Fos was significantly decreased in GSK3β[S9A] mice. CREB dependent transcription and particularly induction of immediate early genes, including c-Fos and zif268 are crucial to L-LTP and long term memory (Fleischmann et al., 2003, Cole et al., 1989, Jones et al., 2001). Increased phosphorylation of CREB on S129 by GSK3β has been demonstrated to decrease CREB activity (Bullock and Habener, 1998; Gonzalez and Montminy, 1989) and reduce expression of immediate early genes in vitro (Tullai et al., 2007). In view of the essential role of the induction of immediate
early genes in long term memory, and the similarities between actinomycin and GSK3β[S9A] expression as well as decreased expression of c-Fos in GSK3β[S9A] mice, our data point to regulation of immediate early genes as crucial molecular mechanism involved in GSK3β dependent regulation of L-LTP and memory.

Cognition is considered an important emerging therapeutic target in neuropsychiatric conditions. Converging evidence relates cognitive impairment to functional outcomes in neuropsychiatric disorders (Green, 2006; Burdick et al., 2007; Martinez-Aran et al., 2007) and supports cognitive impairment as a core feature of neuropsychiatric illnesses.

Worth noting is that the GSK3β[S9A] mice used in this study represent endophenotypes of bipolar disorder, particularly modeling the manic phase (Prickaerts et al., 2006). Evidence is emerging that cognitive impairment is a core feature of bipolar disorder, while cognitive deficits correlate with and predict functional outcomes (Green, 2006; Powell and Miyakawa, 2006; Einat and Manji, 2006). The GSK3β[S9A] mice represent an endophenotypical model with pronounced defective long term memory. Our current data thereby point to GSK3β as a therapeutic target for cognitive dysfunction in these disorders.

The critical involvement of GSK3β in cognitive functions further more underlines its potential as a therapeutic target in early cognitive dysfunction in Alzheimer’s disease and other dementia. In view of the implication of GSK3 in Tau phosphorylation (Spittaels et al., 2000) and its essential role in the communication between amyloid and Tau (Terwel et al., 2008), and even in APP-processing, GSK3 represents an interesting therapeutic target. Unwanted side effects must be carefully considered and countered by further studies in pre-clinical models already available or being generated, although only clinical studies will decide.

In conclusion, this study demonstrates that inactivation of GSK3β by phosphorylation of Serine-9 is intimately involved in long term memory. We believe that these studies will decide.

Acknowledgments

This investigation was made possible by funding and support from the KULeuven-research fund, the Fonds voor Wetenschappelijk Onderzoek-Vlaanderen (FWO-Vlaanderen) and the fund for Innovation in Science and Technology (IWT, Innovatie in Wetenschap en Technologie). IDW is a senior post-doctoral fellow at FWO-Vlaanderen. LR is a FWO-Vlaanderen senior postdoctoral fellow. LR and IDW were supported by FWO and by the Queen Elisabeth Fund for Technologie.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.nbd.2009.04.003.

References

Muylueraet, D., Kremer, A., Jaworski, T., Borghgraef, P., Devijver, H., Croes, S., Dewachter, I., Van Leuven, F., 2008. Glycogen synthase kinase-3beta, or a link between amyloid and tau pathology? Genes Brain Behav. 7 (S1), S66.

Sanna, P.P., Cammalleri, M., Berton, F., Simpson, C., Lutjens, R., Bloom, F.E., Francesconi, W., 2002. Phosphatidylinositol 3-kinase is required for the expression but not for the induction or the maintenance of long-term potentiation in the hippocampal CA1 region. J. Neurosci. 22 (9), 3359–3365.

