Cutting Inserts Wear Monitoring in AISI 1045 Dry Longitudinal Turning through Cutting Forces: a Case Study

ASM MS&T 2019 – October, 2019 – Portland, OR

Ir. Lucas Equeter
Lucas.Equeter@umons.ac.be
Industrial Context

- High industrial financial stakes
- Example: Oil industry pipe threading
 - 100 000€/month cutting inserts for one machine-tool
 - Cutting insert end-of-life:
 - Operator's hearing
 - (Unaided) visual cutting insert observation
 - Mirror finish of the thread
 - Tolerance: 5-10 µm
 - 1-2 % scrap

- Is it possible to save on cutting inserts without worsening the scrap rate?
Cutting tools degradation

- Flank wear
 - Most predictable [1, 2]
 - Most advisable [1, 2]
 - Mainly due to abrasion [1, 2]
 - End-of-life criterion [3]:
 - VB=0.3 mm (mean)
 - VB=0.6 mm (max)
 - Specific to life-testing
 - Industrial practice differs

Cutting tools degradation

- Degradation modeling
 - Tool life models (Taylor’s model) [1]
 - Description of degradation trajectory [2]
 - Degradation models
 - Archard [3]
 - Takeyama and Murata [4]
 - Usui [5]

Arrhenius laws

Degradation monitoring

- Condition monitoring
 - Vibratory frequential contents below 10 kHz (RMS) [1]
 - Noise (change in pitch) [2]
 - Cutting forces (RMS, F_f/F_c ratio) [3]
 - Tool temperature [4]
 - Quality (roughness, dimensional deviation) [5]

Degradation monitoring

- Condition monitoring
 - Vibratory frequential contents below 10 kHz (RMS) [1]
 - Noise (change in pitch) [2]
 - Cutting forces (RMS, \(\frac{F_f}{F_c} \) ratio) [3]
 - Tool temperature [4]
 - Quality (roughness, dimensional deviation) [5]

Experimental Setting

- Workpiece: cylindrical bars
 - AISI 1045 (154 HV$_{30}$)
 - 250 mm length, 58 mm diameter, 10 passes with $a_p = 0.7$ mm
 - Wear, Forces and roughness measurements every 10 passes
Tool Wear

Before

30 min dry turning
Tool Wear

Comparison between a worn and a new insert
Planar cuts of the cutting edge -- Insert inclined by 45°

Flank wear
Crater wear
Cutting Forces Measurement

- Cutting, feed and radial force
 - Triaxial Kistler 9257B force sensor
 - Sensitivity: -7.5 pC/N (F_f and F_r); -3.7 pC/N (F_c)
 - RMS values over the pass
Cutting, Feed and Radial Force

- Increases of resp. 9%, 40% and 10%
- Locally important increase prior to tool end-of-life

Correlation vs. $V_{B,\text{mean}}$

<table>
<thead>
<tr>
<th></th>
<th>Pearson correlation coefficient</th>
<th>95% confidence interval</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{B,\text{mean}}$ vs F_c</td>
<td>0.81</td>
<td>[0.47, 0.94]</td>
<td>< 0.001</td>
</tr>
<tr>
<td>$V_{B,\text{mean}}$ vs F_f</td>
<td>0.87</td>
<td>[0.63, 0.96]</td>
<td>< 0.001</td>
</tr>
<tr>
<td>$V_{B,\text{mean}}$ vs F_r</td>
<td>0.51</td>
<td>[-0.05, 0.83]</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Correlation vs. $V_{B,\text{max}}$

<table>
<thead>
<tr>
<th></th>
<th>Pearson correlation coefficient</th>
<th>95% confidence interval</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{B,\text{max}}$ vs F_c</td>
<td>0.88</td>
<td>[0.63, 0.96]</td>
<td>< 0.001</td>
</tr>
<tr>
<td>$V_{B,\text{max}}$ vs F_f</td>
<td>0.93</td>
<td>[0.78, 0.98]</td>
<td>< 0.001</td>
</tr>
<tr>
<td>$V_{B,\text{max}}$ vs F_r</td>
<td>0.48</td>
<td>[-0.10, 0.81]</td>
<td>0.10</td>
</tr>
</tbody>
</table>
Force ratio $\frac{F_f}{F_c}$ and Tool Wear

- Major indicator of tool wear in literature
- 29% increase
- Locally important increase prior to tool end-of-life

<table>
<thead>
<tr>
<th>Correlation vs. $V_{B,mean}$ and $V_{B,max}$</th>
<th>Pearson correlation coefficient</th>
<th>95% confidence interval</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{B,mean}$ vs F_f/F_c</td>
<td>0.86</td>
<td>[0.59, 0.96]</td>
<td>< 0.001</td>
</tr>
<tr>
<td>$V_{B,max}$ vs F_f/F_c</td>
<td>0.90</td>
<td>[0.69, 0.97]</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>
Roughness Measurement

- Total, arithmetic and quadratic roughness
 - $R_t =$ total height of the profile
 - $R_a =$ arithmetic average roughness
 - $R_q =$ quadratic average roughness

- Diavite DH-6 roughometer
- 3 longitudinal measurements on each bar, separated by 120°
- Gaussian filter in accordance with ISO 16610
Roughness and Tool Wear

- Total, arithmetic and quadratic roughness
 - Increases of resp. 75, 47 and 64 %
 - Indicator may be considered
 - Not monotonous evolution
 - Not on-line measurement
 - Locally important increase at tool end-of-life
Roughness and Tool Wear

- Arithmetic roughness as an indicator of tool wear
- $p=0.95$, CI95 is $[0.86, 0.98] \rightarrow$ very strong correlation
- $p<0.001 \rightarrow$ significant

<table>
<thead>
<tr>
<th></th>
<th>Pearson Correlation coefficient</th>
<th>95% confidence interval</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{B_B} vs R_a</td>
<td>0.95</td>
<td>[0.86, 0.98]</td>
<td>< 0.001</td>
</tr>
<tr>
<td>V_{B_B} vs R_t</td>
<td>0.62</td>
<td>[0.17, 0.85]</td>
<td>0.011</td>
</tr>
<tr>
<td>V_{B_B} vs R_q</td>
<td>0.90</td>
<td>[0.72, 0.96]</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>
Conclusions

Cutting forces indicators may be extremely relevant
- On-line condition monitoring
- RMS value is sufficient to gain valuable knowledge

But...
- Image of tool wear rather than production quality

Roughness indicators may be extremely relevant
- Focus on production quality hence value
- Relevance of standard-recommended indicator questioned
 - Flank wear → wear on nose radius and trailing edge

But...
- No account of other quality indicators
 - Residual stresses, dimensional accuracy, etc.
- Based on sampled quality control
- Complex for on-line use
Thank you for your attention!