Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: opportunities and challenges

Sophie Laurent, Amir Ata Saei, Shahed Behzadi, Arash Panahifar & Morteza Mahmoudi

To cite this article: Sophie Laurent, Amir Ata Saei, Shahed Behzadi, Arash Panahifar & Morteza Mahmoudi (2014) Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: opportunities and challenges, Expert Opinion on Drug Delivery, 11:9, 1449-1470, DOI: 10.1517/17425247.2014.924501

To link to this article: https://doi.org/10.1517/17425247.2014.924501

Published online: 29 May 2014.
Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: opportunities and challenges

Sophie Laurent†, Amir Ata Saei, Shahed Behzadi, Arash Panahifar & Morteza Mahmoudi

†University of Mons, Avenue Maistriaux, NMR and Molecular Imaging Laboratory, Department of General, Organic, and Biomedical Chemistry, Mons, Belgium

Introduction: Bearing in mind that many promising drug candidates have the problem of reaching their target site, the concept of advanced drug delivery can play a significant complementary role in shaping modern medicine. Among other nanoscale drug carriers, superparamagnetic iron oxide nanoparticles (SPIONs) have shown great potential in nanomedicine. The intrinsic properties of SPIONs, such as inherent magnetism, broad safety margin and the availability of methods for fabrication and surface engineering, pave the way for diverse biomedical applications. SPIONs can achieve the highest drug targeting efficiency among carriers, since an external magnetic field locally applied to the target organ enhances the accumulation of magnetic nanoparticles in the drug site of action. Moreover, theranostic multifunctional SPIONs make simultaneous delivery and imaging possible. In spite of these favorable qualities, there are some toxicological concerns, such as oxidative stress, unpredictable cellular responses and induction of signaling pathways, alteration in gene expression profiles and potential disturbance in iron homeostasis, that need to be carefully considered. Besides, the protein corona at the surface of the SPIONs may induce few shortcomings such as reduction of SPIONs targeting efficacy.

Areas covered: In this review, we will present recent developments of SPIONs as theranostic agents. The article will further address some barriers on drug delivery using SPIONs.

Expert opinion: One of the major success determinants in targeted in vivo drug delivery using SPIONs is the adequacy of magnetic gradient. This can be partially achieved by using superconducting magnets, local implantation of magnets and application of magnetic stents. Other issues that must be considered include the pharmacokinetics and in vivo fate of SPIONs, their biodegradability, biocompatibility, potential side effects and the crucial impact of protein corona on either drug release profile or mistargeting. Surface modification of SPIONs can open up the possibility of drug delivery to intracellular organelles, drug delivery across the blood-brain barrier, modifying metabolic diseases and a variety of other multimodal and/or theranostic applications.

Keywords: biomedical, biomedicine, coating, controlled release, functionalization, nanocarrier, surface targeting, toxicity

1. Introduction

Theranostic nanoscale systems combine the modalities of therapy and diagnosis in a smart device, allowing for drug delivery and real-time diagnostic imaging at the same time [1]. Among numerous drug delivery systems (DDSs), magnetic nanoparticles (NPs) such as superparamagnetic iron oxide nanoparticles (SPIONs), a subclass of theranostic systems, have gained significant attention in the past decades [2]. Drug/SPION-loaded NPs or drug-bound SPIONs can be used for simultaneous magnetic resonance/optical/positron-emission tomography (SPECT)/single-photon-emission computed tomography (SPECT)/fluorescence imaging, drug delivery and real-time monitoring of therapeutic response in theranostic, multimodal and multifunctional devices that can be used for simultaneous drug delivery and imaging, biomolecular tracking and cell labeling.

SPIONs can be functionalized with targeting moieties to enhance the accumulation of therapeutics in their site of action. The versatility of SPIONs allows the production of theranostic, multimodal and multifunctional devices that can be used for simultaneous drug delivery and imaging, biomolecular tracking and cell labeling.

SPIONs can be functionalized with targeting moieties to enhance the accumulation of therapeutics in their site of action. The versatility of SPIONs allows the production of theranostic, multimodal and multifunctional devices that can be used for simultaneous drug delivery and imaging, biomolecular tracking and cell labeling.

Article highlights.

- Superparamagnetic iron oxide nanoparticles (SPIONs) can be incorporated into various homing nanostructures to produce biodevices, including drug delivery systems and MRI contrast agents.
- Owing to their intrinsic superparamagnetism, SPION-harboring formulations can be guided by extrinsic magnetic fields to a desired in vivo location.
- The biocompatibility and stability of SPIONs can be enhanced by the type of coating.
- SPIONs can be functionalized with targeting moieties to enhance the accumulation of therapeutics in their site of action.
- The versatility of SPIONs allows the production of theranostic, multimodal and multifunctional devices that can be used for simultaneous drug delivery and imaging, biomolecular tracking and cell labeling.
- Protein corona can change the drug release profile and relaxivity of SPIONs.
- Protein corona can cover the targeting moieties at the surface of the SPIONs and decrease their targeting yield.

This box summarizes key points contained in the article.

SPIONs exhibit a range of favorable properties, including intrinsic magnetism for MRI, safety and availability of biocompatible coatings and surface functional moieties. These virtues have opened up a large range of possible biomedical applications of SPIONs in drug delivery [7], in vivo medical imaging [8], biosensing [9], regenerative medicine [10] and hyperthermia [11].

SPION-based DDSs are commonly composed of magnetite and maghemite NPs with an organic or inorganic coating. These magnetic drug-bearing nanostructures rely on external magnetic field guidance to reach their target tissue. Magnetic vehicles, including magnetic capsules, magnetoliposomes or magnetodendrimers reduce the clearance of drugs and increase their blood circulation time. They also increase drug internalization efficiency within target cells and minimize nonspecific cellular interactions, thus reducing the total required dose and associated side effects. Owing to their unique superparamagnetic characteristics (which are usually observed for NPs with a diameter of 6 – 25 nm), SPIONs become magnetized up to their saturation magnetization using an external magnetic field and gain high magnetic susceptibility. On removal of the magnetic field, no magnetic interaction is observed. In this way, SPIONs acquire the capability to drag the encapsulated or attached drug to the target site in the body under the externally applied magnetic field and are inactivated on the removal of the magnetic field. However, further research is required to gain a thorough knowledge of the toxicity of SPIONs and their interactions with biomolecules, organelles, cells and biological systems.

In this article, we will review the recent advances in the use of SPIONs for drug delivery and imaging applications. In addition, the challenges in the field together with the future directions would be discussed.

2. Preparation and surface modification of SPIONs with functional moieties

Both top-down mechanical attrition and bottom-up approaches have been developed for SPIONs synthesis. Broadly classified, SPIONs synthesis falls into physical, biological and chemical routes. Physical methods include gas phase deposition, electron beam lithography, pulsed laser ablation, laser-induced pyrolysis, powder ball milling and aerosol production. Further, SPIONs might be produced through the biological activity of fungi, bacteria and even proteins such as ferritin and Mms6 [2]. Chemical techniques provide a better consistency of size and composition; they include standard iron chloride coprecipitation, thermal decomposition, microemulsion, hydrothermal synthesis and sonochemical methods, which are explained below. Details on the diverse preparation approaches can be found in our previous comprehensive review [2].

Despite the fact that naked SPIONs are stable in high- and low-pH suspensions and not in the neutral pH, they must be coated for in vivo applications. A surface coating may be exploited to: i) increase the stability and protect NPs against...
agglomeration; ii) protect the magnetic core against oxidation; iii) provide a reactive surface to accommodate drug molecules or targeting ligands; iv) add to the biocompatibility of DDSs by limiting nonspecific interactions; v) protect NPs against reticuloendothelial system (RES) uptake and elimination, thus increasing the blood circulation time; and vi) enhance the NP’s internalization efficiency. Coatings largely influence the functionality and biological fate of DDSs. For example, coating NPs with hydrophilic polymers, including PEG, poloxamers, polysorbate 20 and 80, tocopheryl PEG succinate and dextran, can inhibit the formation of a protein layer at the particle’s surface by providing a hydrophilic cloud and neutral chains [12]. Although PEGylation improves the pharmacokinetic profile of DDSs and enhances the accumulation of nanoscale DDS in tumor [13], coating with polysorbate has been shown to improve the blood-brain barrier (BBB) transport of NPs [14].

In the literature, the main SPION coating agents are silica materials, small organic molecules, biological molecules, and natural and synthetic polymers. A common strategy used for surface modification is the formation of a silica shell, for which alkoxysilane molecules or tetraethyl orthosilicate are generally used [15]. The advantage of a silica coating is that silane groups can be covalently bound onto the NPs’ surface through the reaction of the hydroxyl group present on the iron oxide surface and the alkoxysilane functions (–Si-O-R, where R is commonly –CH3 or –CH2–CH3) [16]. A subsequent crosslinking induces the formation of a silica layer around the particles. Accumulation of PEGylated silane-coated magnetic iron oxide NPs in murine tumors has been reported [17]. Aminosilane-coated SPIONs have demonstrated enhanced cellular uptake and lower toxicity in several cell lines, compared to SiO2-coated, dextran-coated or naked SPIONs [18]. Moreover, surface modification with 3-aminopropyltriethoxysilane (APTES) provides a platform for further conjugation of other diagnostic or therapeutic agents to the primary amine groups of APTES. Similarly, gold shells protect against surface oxidation and reduce NPs agglomeration in aqueous solution [19]. They also increase the biocompatibility of SPIONs by inhibiting the formation of hydroxyl radicals and reactive oxygen species (ROS).

Small organic molecules are frequently used for stabilizing magnetic NPs. This is generally achieved by carboxylates, phosphates and sulfates, due to their high affinity for iron oxide surfaces. These strong interactions result in an ionic attraction between the acidic functions of the coating agents and the hydroxyl groups of NPs (Fe atoms coordinate with water in aqueous solutions. A hydroxyl-functionalized iron oxide surface results from the subsequent dissociation of water. Since hydroxyl groups are amphoteric, they react with acids and bases [20]). Among carboxylic acids, citric and dimercaptosuccinic acids are the most commonly used [21,22]. These polycarboxylic acids contribute to a stable colloidal suspension, resulting from their high coordination on metal surface. Unfortunately, the ionic bonds between the carboxylic functions and the iron oxide surface are labile and can be easily broken by the elevation of temperature or by carboxylic compounds presenting a higher affinity to the surface. Phosphate and phosphonate derivatives are also promising stabilizing candidates, which are stably adsorbed on the metal surface and are capable of forming a strong interaction in aqueous solution. Stabilization by biological molecules is not a common strategy and involves the application of proteins such as avidin–biotin [23] or human serum albumin [24]. Natural and synthetic polymer coatings render NPs’ biocompatibility and improve their blood circulation times. Besides, surface functional groups (e.g., carboxylic acids, amines, thiols, etc.) of polymers can facilitate the conjugation of therapeutic, diagnostic and/or targeting ligands. Dextran is a natural polymer widely used for coating of iron-oxide NPs due to its biocompatibility and biodegradability [25]. This polysaccharide can be strongly adsorbed on the NPs’ surface through the strong hydrogen bonds formed between the hydroxyl groups present on the polymer chains and the surface of iron oxide cores [26]. Several preclinical MRI contrast agents have been produced with a dextran coating or dextran derivatives such as carboxydextran and carboxymethyl dextran [27]. Although dextran is a favorable natural polymer, other polymers such as chitosan, gelatin, alginate and pullulan can also be used as stabilizing agents. Another natural and biodegradable polymer is polylactic acid that can be used for the preparation of stable colloid suspensions with a typical hydrodynamic diameter of 10 – 180 nm [28].

PEG is the most widely used synthetic biocompatible polymer for coating of nanoscale DDSs. PEGylation improves the blood circulation time, hydrophilicity and biocompatibility of nanocarriers. Further, PEG may be coupled with other polymers to increase the hydrophilic properties of nanocarriers [29]. Polymeric magnetic micelles composed of poly(ε-caprolactone)-β-PEG copolymers surrounding the SPION core have shown an increase of r2 relaxivities and image contrast in MRI [30]. Other synthetic polymers used for coating magnetic NPs include but are not limited to polyvinyl alcohol (PVA) [31], polystyrene [32], polyvinylpyrrolidone [33], polyacrylic acid (PAA) [34], polyethyleneimine [35] and a variety of their copolymers.

Polymeric coatings improve the SPIONs’ pharmacokinetic profile, while also tailoring drug loading and release behavior. The coating of SPIONs can be performed via several approaches, including in situ coating, post-synthesis adsorption or post-synthesis grafting. The first two methods form a coating that uniformly encapsulates the NP core, whereas in post-synthesis grafting method polymer end-groups are anchored to the NP’s surface, forming brush-like extensions.

Coating is a major determinant of SPION stability in solution and physiological media. The stability of Fe3O4 NPs is compromised in ambient conditions through oxidation to Fe2O3 or dissolution in acidic media (this is why the synthesis of Fe3O4 NPs is performed in anaerobic conditions). On the contrary, Fe2O3 NPs are chemically stable in alkaline or acidic environments [36]. Further, oxidation of
magnetic NPs by ROS results in loss of magnetic properties. Grafting or coating is used for increasing the stability of SPIONs. But, when nonmagnetic materials are used for coating SPIONs, a decrease in saturation magnetization may occur [37].

The presence of salts in the solution promotes the aggregation of colloidal SPIONs by neutralization of surface charges [38,39]. Although the presence of trace amounts of the organic acids destabilizes the magnetite dispersion, a high concentration of organic acids improves colloidal (electrostatic) stability and salt tolerance of magnetic dispersion by masking the original surface properties of magnetite and overcharging of NPs [40]. Thus, salt-induced aggregation of SPIONs can be inhibited by the addition of organic acids or surfactants to the solution [41]. Further, in colloidal solutions, aggregation of SPIONs is observed due to their extremely large surface-to-volume ratio and a large surface energy with magnetic and long-range attractive van der Waals forces [42]. Therefore, the colloidal stability of SPIONs is dependent on the nature of coating as well as environmental conditions such as ionic strength, pH and specific properties of cell culture media [39,43].

Other than increasing blood circulation time through coatings which leads to more available concentration of NPs to target the tissue of interest, active accumulation of SPIONs in the targeted site can be enhanced by surface engineering with cell-recognizing vector molecules, including monoclonal antibodies and antibody fragments against cell surface receptors (e.g., HER2/Neu, myosin, lymphocyte, selectin, V-CAM1, etc.), lectins (carbohydrate-binding proteins), transferrin, saccharides (hyaluronic acid, etc.), hormones, folate and vitamins (e.g., thiamine and B₁₂). Surface functionalization with targeting moieties can increase the efficiency of drug-loaded nanoscale DDS in reaching the target regions and can decrease the side effects associated with unintended systemic delivery of drugs to non-targeted organs. For example, Huh et al. [44] modified magnetic nanocrystals with cancer-targeting antibody herceptin and used these bioconjugates as MRI probes for \textit{in vivo} monitoring of human cancer cells implanted in live mice. Further functionalization of these nanocrystal probes with fluorescent dye-labeled antibodies allows for simultaneous \textit{in vitro} and \textit{ex vivo} optical detection of cancer as well as \textit{in vivo} MRI.

Further, functionalization with certain peptides such as arginine-glycine-aspartic acid (RGD) and luteinizing hormone releasing hormone can enhance the intracellular delivery of SPIONs. For example, RGD conjugation has been shown to enhance the targeting efficiency and the uptake of ultra-small SPIONs coated with 3-amino propyl triethoxysilane (APTMS) by human umbilical vein endothelial cells (HUVEC) cells [45]. The engineered NPs could label αvβ₃ integrins expressed on HUVEC cells. Further, \textit{in vivo} studies using a clinical 1.5T MR scanner demonstrated the capability of these MRI probes in distinguishing tumors with differential αvβ₃ integrin expression. Functional molecules used for targeting SPION DDSs along with their drug delivery applications have been presented in Table 1.

3. Barriers and considerations in SPION-based drug delivery

Several hindrances compromise the efficiency of DDSs. Physiological barriers, such as vascular epithelium, hinder the access of SPIONs to their cellular targets. In the context of cancer therapy, although DDSs can enhance the accumulation of drug in the target region, it should be noted that only a very small fraction of the total intravenously administered dose is deposited in the tumor [46]. Since intracellular localization takes place only after extravasation and nanoscale DDSs cannot efficiently direct themselves to the target cells even in the presence of surface-engineered functional moieties, research has been focused on enhancing the blood circulation time of DDSs to increase the chance of delivery to the target site by exploiting enhanced permeability and retention (EPR) effect. Exploiting EPR effect in drug delivery relies on the leaky structure of tumor vasculature and poor lymphatic drainage, which enhance the accumulation and retention of NPs in tumor tissue. However, compared to other DDSs, SPIONs take advantage of their magnetic properties that can increase targeting efficiency by applying local external magnetic field. During the delivery of pharmaceuticals and imaging agents to the brain, another problem is the passage through the BBB. Only particles with a sufficiently small size and appropriate physicochemical properties can pass through the BBB. It has been suggested that BBB permeability is influenced by several physicochemical properties [47].

Biodistribution, pharmacokinetics and \textit{in vivo} cellular uptake of SPIONs are directly linked to their physicochemical properties, including hydrodynamic size, charge, shape, surface and the nature of coating material (Figure 1) [48]. For example, hydrodynamic size influences the NPs’ concentration in blood and affects their clearance from circulation [49]. The ideal size of nanoparticulate DDS is suggested to be between 10 and 100 nm, since at that size they can avoid uptake by RES [50]. The size of the particles plays a crucial role in tissue penetration; more specifically, smaller NPs provide higher effective surface area for ligand attachment, higher stability in suspension and, consequently, higher diffusion rate in tissues [2]. Particle size is also important in optimal exploitation of the EPR effect. Particularly in drug delivery with SPIONs, the magnetism is size-dependent. The charge and hydrophobicity of NPs influence their biodistribution by interactions of the NPs with plasma proteins, the immune system, extracellular matrices or non-targeted cells. A recent study has indicated that coating is even more important than size in terms of cellular uptake of SPIONs and ultra-small SPIONs [51]. Hydrophobic NPs have short circulation half-life due to the adsorption of plasma proteins to their surface, which can lead to recognition by the RES, eventuating in opsonization and removal from circulation [52]. Surface modification with molecules like the hydrophilic PEG has been
Table 1. Functionalized superparamagnetic iron oxide nanoparticles used for drug delivery applications and preclinical studies.

<table>
<thead>
<tr>
<th>Functional molecules</th>
<th>Structure of DDS</th>
<th>In vitro/in vivo</th>
<th>Application</th>
<th>Results</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Folate</td>
<td>Folate-conjugated rhodamine isothiocyanate/o-carboxymethyl chitosan/SPIONs</td>
<td>In vitro, folate receptor overexpressing HeLa and normal L929 fibroblast cells</td>
<td>MRI and drug delivery to cervical cancer</td>
<td>Higher accumulation of NPs in cells overexpressing the human folate receptor, potential for MRI</td>
<td>[127]</td>
</tr>
<tr>
<td>Folate</td>
<td>R (folate or methoxy)-PEG114-P (Glu-Hyd-doxorubicin)-PEG46-acrylate)</td>
<td>In vitro, HeLa cell line</td>
<td>MRI and drug delivery to cervical cancer</td>
<td>Much higher R_2 relaxivity value than commercial Feridex and significant cytotoxicity</td>
<td>[105]</td>
</tr>
<tr>
<td>Folate</td>
<td>Folate-conjugated magnetic NPs</td>
<td>In vitro, folate receptor positive HeLa cells</td>
<td>Cervical cancer targeting</td>
<td>Higher accumulation of NPs in cells overexpressing the human folate receptor</td>
<td>[128]</td>
</tr>
<tr>
<td>Folate</td>
<td>Folate-conjugated maghemite NPs</td>
<td>In vitro</td>
<td>Intracellular hyperthermia treatment of solid tumors</td>
<td>Higher accumulation of NPs in cells overexpressing the human folate receptor</td>
<td>[129]</td>
</tr>
<tr>
<td>Folate</td>
<td>Folate-conjugated SPIONs-polymeric (copolymer methyl methacrylate and PEG methacrylate) micelle hybrids</td>
<td>In vitro, HeLa cells</td>
<td>MRI and drug delivery to cervical cancer</td>
<td>Very good contrast enhancement</td>
<td>[130]</td>
</tr>
<tr>
<td>Folate</td>
<td>Folate-functionalized polymeric micelles (PEG-block-poly(ε-caprolactone)) loaded with SPIONs and sorafenib</td>
<td>In vitro, HepG2 cells</td>
<td>Drug delivery to human hepatic carcinoma</td>
<td>Higher internalization of targeted micelles, significant cytotoxicity</td>
<td>[131]</td>
</tr>
<tr>
<td>Folate</td>
<td>Folate-conjugated PEG-modified SPIONs containing doxorubicin</td>
<td>In vitro, MCF-7 cancer cells</td>
<td>MR and fluorescence imaging, targeted drug delivery and hyperthermia effect for breast cancer</td>
<td>Increased particle uptake compared to non-targeted particles</td>
<td>[132]</td>
</tr>
<tr>
<td>Folate</td>
<td>Poly (ethylene oxide)-trimellitic anhydride chloride-folate doxorubicin and SPIONs-folate</td>
<td>In vivo, rats and rabbits</td>
<td>Simultaneous MRI and drug delivery to liver cancer</td>
<td>Anticancer efficacy and specific targeting of folate receptor-expressing tumors; the relative tumor volume was decreased two- and four-fold compared with the free drug and DOXIL® groups in the rat and rabbit models, respectively; formulation showed higher MRI sensitivity comparable to the commercial Resovist®</td>
<td>[133]</td>
</tr>
</tbody>
</table>

APTES: 3-Aminopropyltriethoxysilane; cRGD: Cyclic arginine–glycine–aspartic acid; DDS: Drug delivery systems; GFP: Green fluorescent protein; HepG2: Hepatocellular carcinoma cells; LHRH: Luteinizing hormone releasing hormone; MMC: Mouse mammary carcinoma; NPs: Nanoparticles; PEI: Polyethylenimine; PLGA: Poly(lactic-co-glycolic acid); PSMA: Prostate-specific membrane antigen; RGD: Arginine-glycine-aspartic acid; RES: Reticuloendothelial system; scAbCD3: CD3 single chain antibody; siRNA: Small interfering RNA; SPIONs: Superparamagnetic iron oxide nanoparticles; TfrscFv: Transferrin receptor single-chain antibody fragment.
Table 1. Functionalized superparamagnetic iron oxide nanoparticles used for drug delivery applications and preclinical studies (continued).

<table>
<thead>
<tr>
<th>Functional molecules</th>
<th>Structure of DDS</th>
<th>In vitro/in vivo</th>
<th>Application</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Folate</td>
<td>SPION cores coated with a mixture of the triblock copolymer methoxy PEG-b-poly (methacrylic acid-co-n-butyl methacrylate)-b-poly(glycerol monomethacrylate) and the folate-conjugated block copolymer folate-PEG-b-poly (glycerol monomethacrylate) loaded with doxorubicin</td>
<td>In vitro, HeLa cells</td>
<td>Drug delivery to cervical cancer</td>
<td>Targeting strategy enhanced NP uptake and cytotoxicity [134]</td>
</tr>
<tr>
<td>Folate</td>
<td>Folate-iron oxide incorporated into Pluronic® F127 micelles</td>
<td>In vitro, KB mouth epidermal carcinoma cells</td>
<td>MRI and drug delivery</td>
<td>Higher intracellular uptake into KB cells [135]</td>
</tr>
<tr>
<td>Methotrexate</td>
<td>Iron oxide NPs modified with APTES and covalently bound with methotrexate (drug release in low pH of the lysosomes)</td>
<td>In vitro, MCF-7 and HeLa cells</td>
<td>Imaging and therapy of breast and cervical tumors</td>
<td>Higher uptake of targeted NPs in cells with folate receptor [136]</td>
</tr>
<tr>
<td>Methotrexate</td>
<td>Methotrexate immobilized on iron oxide NP surface via a PEG self-assembled monolayer</td>
<td>In vitro, 9L glioma cells,</td>
<td>Real-time monitoring of drug delivery to brain tumors through MRI</td>
<td>Higher uptake of targeted NPs, significant contrast enhancement, higher cytotoxicity than free methotrexate in vitro [137]</td>
</tr>
<tr>
<td>LHRH</td>
<td>SPIONs- poly(propyleneimine) generation 5 dendrimer-siRNA complex coated with PEG and LHRH</td>
<td>In vitro</td>
<td>Drug delivery</td>
<td>Enhanced internalization into cancer cells and increased efficiency of gene suppression in vitro [138]</td>
</tr>
<tr>
<td>LHRH</td>
<td>LHRH-conjugated SPIONs</td>
<td>In vitro and in vivo</td>
<td>Drug delivery to tumors and metastases from human breast cancer</td>
<td>Targeted NPs had a 12-fold higher accumulation than bare NPs in vitro, higher accumulation in breast to lung metastases in vivo [139]</td>
</tr>
<tr>
<td>Murine melanoma antigens, hgp10025-33</td>
<td>SPIONs carrying murine melanoma antigens, hgp10025-33</td>
<td>In vivo, mouse model</td>
<td>Antigen delivery to murine melanoma</td>
<td>Efficient uptake of engineered NPs [140]</td>
</tr>
<tr>
<td>Anti-PSMA antigen</td>
<td>Quantum dots conjugated onto the surface of a nanocomposite consisting of a spherical PS matrix and the internally embedded, high fraction of SPIONs + PLGA + paclitaxel load</td>
<td>In vitro, PC3mm2 and LNCaP prostate cancer cells, in vivo, tumor-bearing nude mice</td>
<td>Drug storage, targeting and imaging of prostate cancer</td>
<td>Considerable targeting [141]</td>
</tr>
</tbody>
</table>

APTES: 3-Aminopropyltriethoxysilane; cRGD: Cyclic arginine-glycine-aspartic acid; DDS: Drug delivery systems; GFP: Green fluorescent protein; HepG2: Hepatocellular carcinoma cells; LHRH: Luteinizing hormone releasing hormone; MMC: Mouse mammary carcinoma; NPs: Nanoparticles; PEI: Polyethyleneimine; PLGA: Poly(lactic-co-glycolic acid); PSMA: Prostate-specific membrane antigen; RGD: Arginine-glycine-aspartic acid; RES: Reticuloendothelial system; scAbCD3: CD3 single chain antibody; siRNA: Small interfering RNA; SPIONs: Superparamagnetic iron oxide nanoparticles; TFRcFv: Transferrin receptor single-chain antibody fragment.
Table 1. Functionalized superparamagnetic iron oxide nanoparticles used for drug delivery applications and preclinical studies (continued).

<table>
<thead>
<tr>
<th>Functional molecules</th>
<th>Structure of DDS</th>
<th>In vitro/in vivo</th>
<th>Application</th>
<th>Results</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyaluronan against CD44</td>
<td>Hyaluronan-coated SPIONs + doxorubicin</td>
<td>In vitro, SKOV and NC/ADR-RES cells</td>
<td>Targeted delivery as well as MR and fluorescence imaging of ovarian carcinoma</td>
<td>Higher uptake of targeted NPs compared to non-targeted NPs, doxorubicin-based DDS killed not only drug-sensitive but also multidrug-resistant cancer cells</td>
<td>[143]</td>
</tr>
<tr>
<td>cRGD peptide</td>
<td>Peptide-conjugated thermally crosslinked SPIONs loaded with doxorubicin</td>
<td>In vitro, U87MG cells</td>
<td>MRI and drug delivery to human glioblastoma</td>
<td>High preferential binding to U87MG, integrin α<sub>4</sub>β<sub>3</sub>⁺</td>
<td>[143]</td>
</tr>
<tr>
<td>RGD</td>
<td>RGD-modified PEG-grafted PEI functionalized with SPIONs</td>
<td>In vitro, human hepatocellular carcinoma cell line Bel-7402, in vivo, nude mice Bel-7402 hepatoma model</td>
<td>MRI-visible siRNA delivery to hepatocellular carcinoma</td>
<td>High transfection efficiency of targeted NPs versus non-targeted NPs, significant gene suppression, inhibition of tumor growth in the animal model</td>
<td>[144]</td>
</tr>
<tr>
<td>cRGD</td>
<td>cRGD-functionalized, doxorubicin and macrocyclic 1,4,7-triazacyclononane-N', N', N''-triacetic acid-conjugated and ⁶⁴Cu-labeled PEG-SPIONs</td>
<td>In vitro, U87MG cells, in vivo, female athymic nude mice</td>
<td>Drug delivery and PET/MRI of human glioblastoma (tumors with integrin α<sub>4</sub>β<sub>3</sub> expression)</td>
<td>Higher level of cellular uptake, higher cytotoxicity, similar MRI r<sub>2</sub> relaxivity of the SPIONs to that of the commercial Feridex</td>
<td>[145]</td>
</tr>
<tr>
<td>RGD-modified PEG-grafted PEI targeting MMP-2</td>
<td>Peptide-conjugated SPIONs</td>
<td>In vitro, HeLa cells</td>
<td>Drug delivery to cervical cancer</td>
<td>Higher internalization compared to TAT–SPIONs conjugate</td>
<td>[146]</td>
</tr>
<tr>
<td>Chlorotoxin peptide</td>
<td>Iron oxide NPs conjugated to both methotrexate and chlorotoxin, through a PEG linker</td>
<td>In vitro, 9L cells, in vivo, 9L flank xenograft tumors in athymic (nu/nu) mice</td>
<td>Imaging and therapy of brain tumors</td>
<td>Preferential accumulation of targeted NPs and increased cytotoxicity in tumor cells</td>
<td>[147]</td>
</tr>
<tr>
<td>Chlorotoxin</td>
<td>Iron oxide NPs core conjugated with an amine-functionalized PEG silane and chlorotoxin</td>
<td>In vitro, C6 rat glioma cells</td>
<td>MRI-visible drug delivery to brain tumor (and potential for treatment of a variety of cancers overexpressing MMP-2)</td>
<td>Targeted NPs enhanced cellular uptake and caused an invasion inhibition rate of ~ 98% compared to unbound NPs (~ 45%).</td>
<td>[148]</td>
</tr>
<tr>
<td>Chlorotoxin</td>
<td>SPIONs coated with PEG-grafted chitosan and PEI</td>
<td>In vitro, C6 rat glioma cells</td>
<td>siRNA delivery to brain glioma and noninvasive monitoring through MRI</td>
<td>Receptor-mediated cellular internalization of nanovectors and enhanced gene knockdown, contrast enhancement for MRI</td>
<td>[149]</td>
</tr>
<tr>
<td>Chlorotoxin</td>
<td>Iron oxide NP core coated with a copolymer of chitosan, PEG and PEI. GFP encoding DNA was bound to these NPs, and chlorotoxin was then attached using a short PEG linker</td>
<td>In vivo, intravenous injection to mice bearing C6 xenograft tumors</td>
<td>MRI-visible gene delivery to brain glioma</td>
<td>Chlorotoxin did not affect the accumulation of NPs at the tumor site, but specifically enhanced their uptake into cancer cells</td>
<td>[150]</td>
</tr>
</tbody>
</table>

APTES: 3-Aminopropyltriethoxysilane; cRGD: Cyclic arginine-glycine-aspartic acid; DDS: Drug delivery systems; GFP: Green fluorescent protein; HepG2: Hepatocellular carcinoma cells; LHRH: Luteinizing hormone releasing hormone; MMC: Mouse mammary carcinoma; NPs: Nanoparticles; PEI: Polyethylenimine; PLGA: Poly(lactic-co-glycolic acid); PSMA: Prostate-specific membrane antigen; RGD: Arginine-glycine-aspartic acid; RES: Reticuloendothelial system; scAbCD3: CD3 single chain antibody; siRNA: Small interfering RNA; SPIONs: Superparamagnetic iron oxide nanoparticles; TfRscFv: Transferrin receptor single-chain antibody fragment.
Table 1. Functionalized superparamagnetic iron oxide nanoparticles used for drug delivery applications and preclinical studies (continued).

<table>
<thead>
<tr>
<th>Functional molecules</th>
<th>Structure of DDS</th>
<th>In vitro/in vivo</th>
<th>Application</th>
<th>Results</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPPT peptide that specifically targets uMUC-1</td>
<td>Magnetic NP-EPPT-siRNA</td>
<td>In vivo, intravenous delivery into subcutaneous mouse models of breast cancer</td>
<td>MRI-guided siRNA delivery to breast adenocarcinoma</td>
<td>Significant gene downregulation after preferential tumor uptake, significant decrease in tumor growth rate</td>
<td>[151]</td>
</tr>
<tr>
<td>CG-rich duplex containing PSMA aptamer</td>
<td>Doxorubicin/aptamer-conjugated thermally crosslinked SPIONs</td>
<td>In vitro and in vivo, LNCaP cells</td>
<td>MRI and drug delivery to prostate tumor tissue</td>
<td>Selective drug-delivery efficacy in the LNCaP xenograft mouse model</td>
<td>[152]</td>
</tr>
<tr>
<td>A10 RNA aptamer which binds the extracellular domain of the PSMA</td>
<td>N-terminated A10 aptamer, thermally crosslinked SPIONs coated with a carboxylic acid-PEG-derived, anti-biofouling polymer, and doxorubicin which is intercalated in the aptamer and complexed with the SPIONs through charge interactions</td>
<td>In vitro, LNCaP and PC3 cells</td>
<td>Drug delivery and MRI of prostate cancer</td>
<td>High uptake by PSMA-expressing PCa cells (LNCaP), highly sensitive MRI, high cytotoxicity of doxorubicin</td>
<td>[153]</td>
</tr>
<tr>
<td>A10 RNA aptamer targeting PSMA (+) cells and a DUP-1 peptide aptamer specific to PSMA (-) cells</td>
<td>A10 RNA-DUP-1 conjugated by streptavidin, doxorubicin-loaded onto the stem region of the A10 aptamer and aptamers were loaded on SPIONs</td>
<td>In vitro, LNCaP, PC3, HeLa, SW620, MCF-7 and PNT2 cell lines</td>
<td>Drug delivery to prostate cancer</td>
<td>Doxorubicin delivery to both PSMA (+) and PSMA (-) cells and eventual induction of apoptosis, selective cell uptake of SPIONs and effective drug delivery</td>
<td>[154]</td>
</tr>
<tr>
<td>Rotavirus capsid surface protein VP4</td>
<td>VP4-coated Fe$_3$O$_4$ NPs loaded with doxorubicin</td>
<td>In vitro, HepG2 cells</td>
<td>MR and fluorescence imaging and drug delivery of human hepatic carcinoma</td>
<td>Improved MRI sensitivity compared with dextran- and bovine serum albumin-coated Fe$_3$O$_4$ NPs, significant cytotoxicity</td>
<td>[155]</td>
</tr>
<tr>
<td>scAbCD3</td>
<td>scAbCD3-PEG-grafted PEI complexed with SPIONs further condensed with plasmid DNA</td>
<td>In vitro, HB88521 cells, a rat T-lymphocyte line</td>
<td>MRI-visible gene delivery for immunosuppression</td>
<td>16-fold enhancement in the gene transfection level, effective T-cell anergy induced by gene therapy</td>
<td>[156]</td>
</tr>
<tr>
<td>Anti-TFRscFv</td>
<td>Liposome (DOTAP-DOPE)-SPIONs complex functionalized with TFRscFv</td>
<td>In vitro, human pancreatic (PANC-1) and MDA-MB-231 breast cancer cell lines, in vivo, female athymic nude (nu/nu) mice injected with PANC-1 cells (bearing pancreatic tumors)</td>
<td>Drug delivery to pancreatic cancer</td>
<td>Encapsulation in liposomes resulted in 11-fold increase in SPIONs’ uptake in cancer cells in vitro; specific and efficient delivery of SPIONs into tumor cells after systemic administration</td>
<td>[157]</td>
</tr>
</tbody>
</table>

APTES: 3-Aminopropyltriethoxysilane; cRGD: Cyclic arginine-glycine-aspartic acid; DDS: Drug delivery systems; GFP: Green fluorescent protein; HepG2: Hepatocellular carcinoma cells; LHRH: Luteinizing hormone releasing hormone; MMC: Mouse mammary carcinoma; NPs: Nanoparticles; PEI: Polyethylenimine; PLGA: Poly(lactic-co-glycolic acid); PSMA: Prostate-specific membrane antigen; RGD: Arginine-glycine-aspartic acid; RES: Reticuloendothelial system; scAbCD3: CD3 single chain antibody; siRNA: Small interfering RNA; SPIONs: Superparamagnetic iron oxide nanoparticles; TFRscFv: Transferrin receptor single-chain antibody fragment.
Table 1. Functionalized superparamagnetic iron oxide nanoparticles used for drug delivery applications and preclinical studies (continued).

<table>
<thead>
<tr>
<th>Functional molecules</th>
<th>Structure of DDS</th>
<th>In vitro/in vivo</th>
<th>Application</th>
<th>Results</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transferrin</td>
<td>Transferrin-conjugated SPIONs</td>
<td>In vivo, C6 glioma rat model</td>
<td>Targeting and imaging of brain glial tumors</td>
<td>Significant contrast enhancement</td>
<td>[158]</td>
</tr>
<tr>
<td>Hepama-1 humanized monoclonal antibody and radioactive rhenium-188 Antibody HuCC49ΔCH2 and fluorescent dye 5-FAM</td>
<td>Hepama-1 conjugated SPIONs</td>
<td>In vitro, SMMC-7721 liver cancer cells</td>
<td>Drug delivery to liver cancer</td>
<td>Significant cytotoxicity in SMMC-7721 cells</td>
<td>[159]</td>
</tr>
<tr>
<td>Antibody HuCC49ΔCH2 and fluorescent dye 5-FAM conjugated to PEG of iron oxide NPs and anticancer drugs doxorubicin, azido-doxorubicin, MI-219 and 17-DMAG were encapsulated into iron oxide NPs</td>
<td>HuCC49ΔCH2 and fluorescent dye 5-FAM conjugated to PEG of iron oxide NPs and anticancer drugs doxorubicin, azido-doxorubicin, MI-219 and 17-DMAG were encapsulated into iron oxide NPs</td>
<td>In vitro, LS174T colon cancer cell line</td>
<td>MR and fluorescence imaging and pH-dependent intracellular drug release for treatment of colon cancer</td>
<td>HuCC49ΔCH2-fuctionalized SPIONs delivered more drug to LS174T cells than nonspecific IgG-SPIONs</td>
<td>[160]</td>
</tr>
<tr>
<td>Monoclonal antibody against the neu receptor</td>
<td>SPIONs coated with a copolymer of chitosan and PEG were labeled with a fluorescent dye and conjugated with monoclonal antibody</td>
<td>In vivo, transgenic MMC cells</td>
<td>Drug delivery and MRI of MMC</td>
<td>Anti-neu antibody-conjugated NPs showed high uptake in neu expressing MMC cells compared with IgG-conjugated NPs, significant contrast enhancement</td>
<td>[161]</td>
</tr>
<tr>
<td>EGFRvIII antibody</td>
<td>EGFRvIII antibody-conjugated iron oxide NPs</td>
<td>In vitro, U87MG cells, ex vivo, neurospheres from patients, in vivo, athymic nude (nu/nu) mice inoculated with U87ΔEGFRvIII cells</td>
<td>MRI-guided convection-enhanced delivery and targeted therapy of brain glioblastoma</td>
<td>A significant decrease in glioblastoma cell survival, no toxicity in human astrocytes; a significant increase in animal survival rate was found after convection enhanced delivery of magnetic NPs</td>
<td>[162]</td>
</tr>
</tbody>
</table>

APTES: 3-Aminopropyltriethoxysilane; cRGD: Cyclic arginine-glycine-aspartic acid; DDS: Drug delivery systems; GFP: Green fluorescent protein; HepG2: Hepatocellular carcinoma cells; LHRH: Luteinizing hormone releasing hormone; MMC: Mouse mammary carcinoma; NPs: Nanoparticles; PEI: Polyethylenimine; PLGA: Poly(lactic-co-glycolic acid); PSMA: Prostate-specific membrane antigen; RGD: Arginine-glycine-aspartic acid; RES: Reticuloendothelial system; scAbCD3: CD3 single chain antibody; siRNA: Small interfering RNA; SPIONs: Superparamagnetic iron oxide nanoparticles; TfRscFv: Transferrin receptor single-chain antibody fragment.
shown to reduce NPs' opsonization through steric repulsion. Positively charged NPs can also bind to non-targeted cells and undergo nonspecific internalization. Positively charged SPIONs generally have shown a higher cellular internalization and undergo nonspecific internalization. Positively charged NPs can also bind to non-targeted cells shown to reduce NPs' opsonization through steric repulsion.

Drug delivery using SPIONs suffers from a number of drawbacks. SPION DDSs in which drug molecules are conjugated to the NPs' surface exhibit low drug entrapment efficiency and failure to release the drug molecule at the target site due to covalent binding. Further, residual concentration of catalysts (e.g., Cu) used during the covalent linking of drugs to SPIONs can cause in vivo toxicity. Moreover, controlling the orientation of functional moieties to the NP's surface is both important and difficult. For example, when carboxylic acid-functionalized SPIONs interact with ligands with multiple amine groups, inactivation of ligands is observed. SPIONs must possess favorable pharmacokinetic properties. On entry of a DDS to the blood stream, most of the drug payload might be released – an effect called initial burst release. To alleviate this effect in SPIONs, Mahmoudi et al. [55] coated iron oxide NPs with crosslinked PEG-cofumarate, which reduced the burst release of surface-loaded tamoxifen by 21%, compared with the non-coated tamoxifen-loaded particles.

4. Toxicity and biocompatibility of SPIONs

Biocompatibility is an essential factor that must be addressed before SPIONs can be used in vivo. In general, SPIONs have only been associated with low toxicity in the human body. Due to the broad safety margin of iron oxide NPs, SPION-based dextran-coated products (Feridex, Endorem, Combidx and Sinerem) are currently approved as MRI contrast agents. Among several other metal oxide NPs, iron oxide demonstrates acceptable safety profile and non-cytotoxicity in concentrations < 100 µg/ml [56]. A study on human glia, breast cancer and normal cell lines indicated that SPIONs with varying physicochemical properties only demonstrate low toxicity or accountable cytotoxicity at doses > 100 µg/ml and are nontoxic at lower doses [57]. Although only a few in vivo toxicity assessment studies on humans exist, it has been shown that dextran-coated ultra-fine SPIONs only produce mild and transient side effects, including urticaria, diarrhea and nausea [458]. SPIONs are suggested to biodegrade and clear from the body through the endogenous iron metabolic pathway [4]. The released iron is first metabolized in the liver and then either used in production of red blood cells or eliminated from body through kidneys.

In spite of general safety in low concentrations, SPIONs have been shown to arrest the cell cycle in the G0G1 [59]. Further, Mahmoudi et al. [60,61] have noted the existence of gas vesicles and increased granularity in SPION-treated cells, which were indicative of autophagy-mediated cytotoxicity. Therefore, thorough characterization of every single formulation seems to be necessary. The biocompatibility extent of SPIONs mainly depends on the nature of the magnetic content, final NP size and nature of coating. The toxicity of SPION-COOH, plain SPIONs and SPION-NH2 surface chemistries were evaluated by comparing the gene expression profiles of hypertrophic cardiomyopathy human heart, BE-2-C brain and 293T kidney cell lines using DNA microarrays [62]. SPION-COOH was shown to alter the expression of genes involved in cell proliferative responses. Yang et al. studied the toxicity of Fe3O4 NPs (10 and 100 – 150 nm particles with different functional groups) by quantifying metabolic activity, membrane integrity and DNA stability in normal fibroblasts versus fibrosarcoma cells [63]. Whereas all magnetic NPs exerted almost ≤ 5% cytotoxicity or genotoxicity in fibrosarcoma cells at concentrations < 500 µg/ml, the positively charged APTMS-coated magnetic NPs induced > 10% toxicity against normal cells. Dose, size and surface charge were the most important determinants of magnetic NPs genotoxicity, in which smaller and positively charged (APTMS-coated) magnetic NPs had higher toxicity in normal cells than the cancer cell line.

Another important issue that must be considered is the effects of SPION interactions or metabolism on the iron homeostasis of the human body. Jain et al. [64] have studied the changes in serum and tissue iron levels for 3 weeks after administration of magnetic NPs to rats. Although the iron levels in serum gradually increased during the first week, thereafter, levels of iron slowly declined. A greater fraction of the injected iron was shown to localize in the liver and spleen compared with brain, heart, kidney and lung. In another study, the toxicity and pharmacokinetics of SPIONs...
was studied in dogs and mice using radioactive iron [65]. About 1 h post-injection, 82.6 and 6.2% of the SPIONs localized in the liver and spleen, respectively. The concentration of particles gradually decreased in the liver and spleen with radioactive iron being incorporated into the hemoglobin of erythrocytes. Interestingly, a previously induced anemia was successfully treated within a period of 7 days. Although no acute or subacute toxic side effects were observed with a maximal dosage of 3000 mmol Fe/kg (i.e., 150 times higher than the concentration used in liver MRI) in dogs and mice, cautionary measures must always be taken. Since free iron is toxic [66], the iron dose of the clinically administered SPIONs must be many times lower than body iron levels. In normal circumstances, the injected iron is expected to be metabolized and regulated by normal physiological iron homeostatic mechanisms. Evidently, repeated dosing of SPIONs in short intervals would not be a desirable option in imaging and drug delivery. FDA may not approve the application of the SPION-based products in patients with iron metabolism problems.

5. Protein corona as a newly discovered barrier/promise in drug delivery

On entering the blood stream, NPs are rapidly covered with a protein corona composed of two layers of high-affinity and low-affinity proteins. The protein corona composition depends on the physicochemical properties of NPs [67] as well as interaction temperature [68], protein source [69], incubation time with protein source [67], concentration of protein source [70] and gradient concentration [71]. The adsorption of proteins onto the NP surface has been shown to negate the effects of functional moieties and mask the targeting efficiency of the nanoscale DDSs by up to 99% [72,73]. In addition, adsorption of proteins facilitates the uptake and elimination of NPs by RES, leading to decrease in targeting efficacy [74,75]. Protein corona might also allow NPs to enter unintended and otherwise inaccessible tissue sites [76,77]. Very recently, we showed that the protein corona can change the relaxivity of the SPIONs with various surface charges [78]. More specifically, it was revealed that the protein corona considerably decreased the relaxivity of the positively charged SPIONs but had a slight and no effect on the relaxivity of negative and plain SPIONs, respectively. The dramatic decline in the relaxivity of the positively charged SPIONs results from particle agglomeration in the presence of the proteins.

Protein corona brings about a new concern for nanotoxicology. Research has shown that the NP-protein interface has the ability to induce conformational changes in the structure of attached proteins [79]. Following detachment of proteins from the NP surface, changed proteins might induce immunoallergic responses in the blood or protein fibrillation in the intracellular environment and finally lead to neurodegenerative diseases and cancer [80]. Thus, the abovementioned factors are accounted as barriers introduced by protein corona in the field of nanoparticulate drug delivery. To eliminate the negative effects of protein corona on the targeting efficiency of nanocarriers, it has been suggested that the NP surface be coated with hydrophilic antibiofouling polymers, including PEG [81], poly(TMSMA-r-PEGMA) [82], Zwitterions [83] and the like.

On the contrary, protein corona is showing some promise in some aspects of drug delivery. The binding of blood proteins to nanomaterials may reduce cytotoxicity [84] and improve NPs’ stability under harsh environmental conditions [85], and the recent attempts have focused on exploiting protein corona for good. For example, coronas on a gold nanorod coated with cetyltrimethylammonium bromide were exploited for holding therapeutics at a capacity of 5 – 10 times higher than that achieved by covalent conjugation. Subsequent release of therapeutics could be achieved either by ultrafast laser excitation of the nanorods at their longitudinal surface plasmon resonance or by increasing the temperature [86]. In another study, DNA payloads were loaded on protein coronas formed around gold nanorods, nanobones and carbon nanotubes. The authors demonstrated that changing the corona composition (especially the concentration of human serum albumin) can tune the DNA release profile from NP protein coronas [87]. Another study demonstrated that, when exposed to plasma, vitronectin molecules coat the lipid particles made of 1,2-dioleoyl-3-trimethylammonium propane and DNA and promote particle uptake in cancer cells expressing high levels of the vitronectin \(\alpha_\nu\beta_3 \) integrin receptor [88]. Therefore, rational engineering and fine-tuning of NP’s surface might create the opportunity to exploit protein corona for overcoming biological barriers (e.g., vascular or cellular barrier, BBB), or mitigate the toxicity of nanocarriers in vivo. For example, although binding of complement protein C3 and opsonizing protein IgG onto NPs promotes their phagocytosis [89], surface adsorption of human serum albumin increases blood circulation time of NPs [90]. Further, it can be speculated to find protein molecules in some surface-modified NPs, which after sorption to NPs surface may direct them to a desired target inside the body.

6. SPION-based drug delivery

SPIONs are nanoscale systems with promising applications in the delivery of chemotherapeutics, genes, peptides, radionuclides and anti-inflammatory agents. Further, the capability of SPIONs in the production of localized heat can be used in magnetic hyperthermia to eradicate cancer cells (Figure 2). The mission of a DDS is to deliver the effective concentration of a drug to a desired location inside the body, without undesirable interactions with blood, cells and proteins. Moreover, these nanosystems can be engineered to provide controlled release of the encapsulants either in a time- or stimuli-responsive manner. Most drug delivery studies have been directed to the treatment of cancer. Treatment of solid and malignant tumors is a challenge that is complicated by low drug internalization due to a hard-to-penetr
peritumoral endothelium, dense extracellular matrix of solid tumors and the target cell membrane. The selective delivery of therapeutic agents into a tumor enhances their antitumor efficacy and decreases toxicity in normal tissues. Utilizing the EPR effect, a drug-loaded DDS can achieve a higher concentration of a certain drug in a solid tumor than the free drug. In addition, functional tumor-targeted NPs may further increase the local concentration of the drug or change the intracellular biodistribution within the tumor via receptor-mediated internalization. Numerous systems in the nanoscale can be used as advanced DDSs, including micelles, liposomes, polymersomes, NPs, dendrimers or polymers.

Figure 2. Superparamagnetic iron oxide nanoparticles can be guided to their site of action using an externally applied magnetic field. The subsequent accumulation of superparamagnetic iron oxide nanoparticles in the target site can be exploited for simultaneous drug delivery, MR imaging or hyperthermia therapy of cancer. Magnetoliposomes are composed of a lipid bilayer surrounding superparamagnetic iron oxide nanoparticles and can harbor both hydrophilic and hydrophobic drug molecules in the core or within the lipidic bilayer, respectively. Magnetic capsules containing a single or multi-superparamagnetic iron oxide nanoparticle core are most extensively used, in which drug molecules are usually contained in the polymeric coating. Superparamagnetic iron oxide nanoparticle drug delivery systems are surface engineered with polymers and functional moieties to improve stability and modulate targeting efficiency.

SPIONs are considered efficient nanovectors since they provide an additional targeting capability: that is, post-injection, the SPION–drug complex can be transported by blood circulation and made to accumulate in the tumor region by applying a magnetic field on the target site. Moreover, MRI can be used simultaneously to validate the localization of magnetic DDSs. When delivered to the target site, the loaded drugs are usually released by diffusion, vehicle rupture or dissolution, endocytosis of the conjugate and final endosomal rupture, as well as smart pH or temperature-sensitive dissociation. The drug is generally coupled to NPs’ surface by covalent or ionic bonds. To release the drug in the target...
site, the link between the magnetic core and the drug must be cleaved. The link cleavage can be triggered by external stimuli such as variations in pH, temperature or enzymatic reactions. SPIONs used for drug delivery purposes can be roughly divided in two classes according to their structures: i) nanocapsules with SPIONs in the core; and ii) a porous biocompatible polymer harboring precipitated SPIONs in the pores. Drug molecules are either bound to the NPs' surface or contained within magnetic liposomes and microspheres. Thus, SPION DDSs can be in the form of NPs, nanospheres (nanocapsules), liposomes and microspheres. The efficacy of magnetic drug delivery is associated with a number of physical parameters other than the production and design of the DDS, including field strength and gradient as well as the volumetric and magnetic properties of SPIONs. A strong permanent magnet is commonly fixed outside the body on the desired targeted site to generate the magnetic field gradient. Some researchers have even attempted the implantation of magnets at the pathological site in vivo [91].

Developing successful DDSs based on SPIONs has come a long way. Widder et al. [92] devised the first magnetically responsive microspheres, in which doxorubicin was encapsulated in albumin magnetic NPs. Later preclinical and clinical studies focused on the intravenous injection of SPIONs at proximity of the tumor site in 14 patients [93,94]. MR tomographic techniques, pharmacokinetic studies and the histological detection of magnetite revealed that in 50% of those patients the ferrofluid could be successfully directed to the tumor sites. Widder et al. [95] injected doxorubicin-loaded magnetic albumin intra-arterially proximal to the tumor site in rats bearing Yoshida sarcoma. This increased the targeting yield by 200 times compared to intravenous injection and led to tumor remission.

Nanocapsules have been proved as effective tools for increasing the functionality of magnetic NPs. In fact, the flexibility of using different methods for the preparation, a wide variety of raw materials for preparation, adjustable physicochemical properties (e.g., size, surface charge, morphology, shell thickness, etc.) and functional versatility of nanocapsules have made them promising candidates for biomedical applications. However, given the continuing progress in the field of drug delivery, relevant parameters such as colloidal stability, encapsulation efficiency, release kinetics and interactions at the nano–bio interface (e.g., with proteins) should be thoroughly studied. Nanocapsulation can not only protect the encapsulated drugs against degradation by pH and light, but it can also minimize tissue irritation and provide controlled release by external factors such as temperature, reduction, light radiation and pH changes [96].

Kong et al. [97,98] produced hollow silica nanocapsules containing embedded magnetic NPs of Fe3O4. The in vitro treatment of MT2 breast cancer cells and B16/BL6 mouse melanoma cells with radiofrequency-activated nanocapsules containing camptothecin resulted in significant suppression of cancer and/or tumor growth. It was hypothesized that the remote radiofrequency magnetic field heats up the magnetic NPs and rises the localized liquid temperature inside the nanocapsules. More importantly, a significant increase (6 – 13 times) in the magnetic moment in nanocapsules was observed, as compared to the isolated 10 nm Fe3O4 NPs. In vivo mouse tumor penetration study using magnetic-guided nanocapsules revealed that the average number of magnetic nanocapsules trapped in the tumor cells was about 200 times higher with magnetic attraction, as compared to that for the control group. Additionally, a moderate magnetic field (~ 1000 Oe) led to the efficient penetration (~ 10 cell layers) of nanocapsules. (Figure 3 Panel A). In another study, Tan et al. [99] reported encapsulation of both conjugated polymers (poly [2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylenevinylene]) and magnetic NPs inside a thin silica shell as the fluorescent emitter. In vitro MTS (3-[4,5-dimethylthiazol-2-yl]-5-[3-carboxymethoxyphenyl]-2-[4-sulfophenyl]-2H tetrazolium tests) results showed that there is no noticeable cytotoxicity to the human hepatocellular carcinoma cells (HepG2) with nanoparticle concentrations up to 350 mg/ml. Confocal microscopy images of the HepG2 cells cultured under the same conditions demonstrated that, under the influence of an external magnetic field (~ 1.3 T), cellular uptake of nanocapsules was enhanced significantly (Figure 3 Panel B).

Chitosan has been widely used as a promising gene nanocarrier because of its highly cationic, non-cytotoxic and biodegradable nature [100]. Bae et al. [101] synthesized pluronic/chitosan nanocapsules encapsulating iron oxide NPs for magnetically triggered intracellular delivery of various therapeutic agents. The use of an external magnetic field revealed that iron oxide NPs preserved their magnetic property after encapsulation. Intracellular uptake into green fluorescent protein-expressing human lung carcinoma (GFP-A549) showed that, even after 2 h incubation, nanocapsules were not efficiently internalized by cells, whereas in the presence of a magnetic field, they entered cytoplasm only after 30 min. This implies that the magnetic field increases sedimentation of nanocapsules on the cells surface. Kumar et al. [102] synthesized chitosan-coated magnetic NPs loaded with plasmid DNA-expressing enhanced green fluorescent protein. The NPs injected into the tail vein of mice could be effectively directed to the heart and kidney via an external magnetic field.

Another strategy employed for magnetic drug targeting and controlled release is to use thermosensitive smart polymers for encapsulation of magnetic NPs. Drug release can be controlled by manipulating the temperature of the polymeric shell (i.e., by swelling and de-swelling), resulting in higher release rates above the lower critical solution temperature (LCST) and lower rates below the LCST. For instance, doxorubicin was incorporated by chemical inter- action onto the surface of 3-mercaptopropionic acid hydr- azide (HSCH2CH2CONHNH2) functionalized magnetic NPs encapsulated with dextran-g-poly(N-isopropylacryla- mide-co-N,N-dimethylacrylamide) (dextran-g-poly(NIPAAm-co-DMAAm) as a thermosensitive biodegradable polymer
Figure 3. (A) (a) FITC imaging results from surgically obtained tumor tissues show the presence of accumulated nanocapsules in the tumor tissue (green markers) when a magnet is placed nearby. The control experiment (i.e., with no magnet nearby) shows very few magnetic nanocapsules near the tumor site. The 4',6'-diamidino-2-phenylindole images also show the tumor structure via imaging of the nuclei in the tumor. (b) Mouse brain model H&E section imaging is shown. The H&E image represents BBB crossing of magnetic nanocapsules with applied magnetic field. (B) Confocal microscopy images of the HepG2 cells cultured with different concentrations of MEH-PPV-loaded nanocapsules without (top) and with (bottom) influence of an external magnetic field are shown. (C) MRI scan of the buffalo rat implanted with hepatocellular carcinoma is shown: (a) baseline scan before injection of nanocapsules and (b) 30 min post-injection. Particles are seen as new dark regions in the hepatocellular carcinoma. (c) Histology slide of the hepatocellular carcinoma showing particles as dark deposits. (d) In vitro drug release profiles of doxorubicin-loaded composite magnetic NPs in phosphate buffer (pH 7.4) at 24°C (T < LCST), 37°C (T > LCST) and 42°C (T > LCST) plotted against time t (external magnetic field absent).

A. Adapted with permission from [97,98].
B. Adapted with permission from [99].
C. Adapted with permission from [104].
BBB: Blood brain barrier; FITC: Fluorescein isothiocyanate; H&E: Hematoxylin and eosin stain; HepG2: Hepatocellular carcinoma cells; LCST: Lower critical solution temperature; NP: Nanoparticle; MEH-PPV: Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene].
with LCST slightly above 37°C. The drug release from the encapsulated carrier and the bare one in PBS (pH 5.3), at a temperatures of 20°C (< LCST) and a low hyperthermal temperature (i.e., 40°C (> LCST) was higher from the polymeric shell. At the temperatures lower than LCST, the drug carrier is stable and release is slow, whereas at temperatures higher than LCST the polymeric shell collapses so that the squeezing effect of the polymer leads to enhanced drug release [103]. In another study [104], iron oxide magnetic NPs were encapsulated in thermoresponsive poly-N-isopropylacrylamide (LCST ~ 37°C). When the nanocapsules were exposed to an alternating magnetic field (AMF), the release yield of doxorubicin in PBS was in close agreement with the observed release in the absence of an AMF at 42°C, implying the efficiency of using AMF to generate heat for controlled drug release. Additionally, in an in vivo experiment, the nanocapsules were successfully targeted to hepatocellular carcinoma by an external magnet in buffalo rat model (Figure 3 Panel C).

An additional promising approach is to use acid-degradable linkers to attach a drug to the DDS. The linker is degraded in the slightly acidic pH of the tumor microenvironment. Yang et al. [105] recently described folate receptor-targeted SPIONs to deliver doxorubicin to tumor cells. SPIONs were encapsulated in the multifunctional polymer vesicles and doxorubicin was conjugated onto the hydrophobic polyglutamate polymer segments via an acid-cleavable hydrazone bond and could be released at low pH values. Due to folate receptor-mediated endocytosis, these NPs showed higher cellular uptake and higher anticancer activity compared to folic acid-free vesicles.

Multifunctional worm-like polymeric vesicles made of heterofunctional triblock polymer R (methoxy or folic acid)-PEG$_{114}$-PLA$_x$-PEG$_{46}$-acryloyl harboring SPIONs and doxorubicin were synthesized by Yang et al. [106]. Whereas methoxy/folate groups provided tumor targeting at the outer surface, the acrylate groups at the inner surface were crosslinked with free radical polymerization to enhance the stability of particles. Enhanced cytotoxicity in HeLa cell line and higher T_2 relaxivity compared to Feridex®, a commercially available MRI contrast agent, make these magnetic vesicles potential candidates for simultaneous drug delivery and MRI imaging.

In another novel study, Wang et al. [107] incorporated SPIONs and doxorubicin into acoustic droplets, which were further functionalized with anti-VEGFR-2 antibody. The VEGFR-2 antibody and magnetism-assisted targeting brought about a 5.4-fold increase in targeting efficacy of the SPION-embedded droplets. The droplets were used effectively to disrupt cells by ultrasound-triggered acoustic droplet vaporization.

Other cargos may also be incorporated into SPIONs formulations. Therapeutic radionuclides such as 60Y, 131I, 177Lu and other α or β emitters can be attached to SPIONs in order to provide a higher local dose of the radioisotope for tumor eradication as compared to conventional radiotherapy. This approach can reduce the associated side effects of radiotherapy. Further, conjugation of diagnostic radiotracers such as 67Ga, 64Cu and 99mTc to SPION DDSs can also help in tracking the NPs fate in vivo, as well as providing opportunity for dual-modality imaging (e.g., MRI/SPECT, MRI/PET). Magnetoliposomes, another class of magnetic DDSs, are nanocomposites of SPIONs surrounded by a phospholipid bilayer with high entrapment efficiency and stability [108]. Further, magnetoliposomes present optimum magnetic responsiveness and can accommodate both hydrophilic and hydrophobic drugs. Moreover, liposomal encapsulation increases the biocompatibility of SPIONs and protects the encapsulants from environmental conditions. Magnetodendrimers, another subclass, are well-suited nanocomposites for cell tracking using MRI. Further, these systems can couple the two modalities of MR and fluorescent imaging. For instance, dendronized iron oxide NPs have been devised for multimodal imaging [109] and for noninvasive tracking of stem cell transfer for muscle disorders [110].

Magnetic hyperthermia offers the possibility of taking a drug-free approach to the treatment of cancer by localized heating of cancer cells from inside. Raising the intracellular temperature to 41 – 47°C results in cancer cell apoptosis, whereas normal cells can tolerate this temperature. Targeted hyperthermia is based on the endocytic uptake of magnetic NPs followed by their accumulation and concentration in intracellular endosomal vesicles. The subsequent exposure of these NPs to a high frequency AMF heats them up through absorption of the energy and its conversion to heat (magnetic relaxation), leading to the localized killing of the cells. NP size is a determinant factor of heating power. Yallapu et al. [111] reported on the synthesis of water-dispersible multifunctional SPIONs suited for hyperthermia, MRI and drug delivery. The magnetic NPs were coated with multilayer β-cyclodextrin and pluronic and were loaded with curcumin, an anticancer drug. The formulation not only improved MRI characteristics and enhanced the anticancer activity of curcumin, but it was also capable of generating localized heat under an AMF, thus showing promise in the treatment of cancer. Matsuoka et al. [112] developed magnetite cationic liposomes for treatment of osteosarcoma using localized hyperthermia in hamsters. They achieved the tumor temperature of 42°C, whereas the normal tissues remained unheated. About 12 days after initiation of the study, tumor volume in hamsters treated with SPION hyperthermia was 1/1000-fold smaller than untreated animals.

7. Conclusion

The availability of SPION-based MRI contrast agents refers to the fact that SPIONs may have overcome several biocompatibility and formulation issues and are way ahead of other nanoscale DDSs. Therefore, SPION-based nanoscale DDSs might have the potential for treatment of a diverse range of diseases. The future focus of drug delivery using magnetically driven SPIONs will be on optimizing the synthetic methods
in order to prepare reproducible particles with optimal surface charge, shape, size, biocompatibility and high magnetic moments. Further, researchers should concentrate on improving the specific targeting properties of magnetic DDSs by efficient surface engineering (e.g., determining the optimal frequency, spacing and orientation of functional moieties) and by identification of novel tissue and cellular biomarkers. In addition, more research should be devoted to the stability of SPIONs in colloidal solutions and serum, critical physiological factors that might affect drug delivery outcome (e.g., protein corona) and tuning the balance between protective coating, magnetic moment and other physiochemical properties. These advances should also be coupled with novel strategies, for example, targeting DDSs to endothelial markers in the vicinity of target region or designing NPs which release their cargo in response to the tumor microenvironment. Finally and hopefully, further developments will materialize in the applications of SPIONs in drug delivery across the BBB, intracellular delivery, and for devising multifunctional and theranostic biodieces.

8. Expert opinion

Magnetic NPs usually have a magnetization value in the range of 30 – 50 emu/g [50]. Most clinical magnetic particles or beads are based on ferromagnetic iron oxides with low specific magnetic moments of 20 – 30 emu/g [113]. A higher magnetic moment (> 30 emu/g) may be suitable for SPION’s intended use in drug delivery [114,115]. So far, a targeting depth of approximately 10 cm (8 – 12 cm) has been reported in a swine model after intra-arterial infusion of magnetic NPs [116]. The success of SPIONs as DDSs is limited by inadequate magnetic gradients, which stem from the distance between the magnets and the target site. Hypothetically, the magnetic targeting would be more effective in regions closer to the magnets and with slower blood flow. Mathematical simulations have suggested that drug delivery using magnetic systems with an externally applied field seems effective only for targets close to the body surface [117], including, for example, squamous cell carcinoma, malignant melanoma, Kaposi’s sarcoma and breast carcinoma. Therefore, superconducting magnets have been used for magnetic drug targeting. Strong external SmBaCuO and YBaCuO bulk superconductors were able to concentrate ferromagnetic particles inside a flow system up to at least 20 mm from the magnet [118] and permanent NdFeB magnets are believed to enhance the depth of magnetic field by up to 10 – 15 cm. Further attempts have been directed to localize the implantation of magnets [119] and application of magnetic stents [120].

Many other issues should be considered while selecting SPIONs for drug delivery, including but not limited to studying the pharmacokinetics and in vivo fate of SPIONs, as well as their biodegradability, biocompatibility and potential side effects. More research should be devoted considering the stability of SPIONs in colloidal solutions and in physiological environments [121], critical physiological factors that might affect drug delivery outcome (e.g., protein corona) and tuning the balance between protective coating, magnetic moment and other physiochemical properties. Very recent results revealed that the locally induced temperature around the surface of gold NPs can change the protein corona decoration and alter the biological fate of the NPs [122]. Since SPIONs can be heated up using external magnetic field (more specifically for hyperthermia applications), one should probe their corona variations and biological fate during their hyperthermia applications. The biological interactions of SPION components should also be studied in detail. For instance, in biocompatible silica-coated SPIONs, exposure of the iron oxide core can cause oxidative stress, which may be associated with neurological disorders. Similarly, the degradation products of biocompatible poly(methyl methacrylate) can be toxic.

Surface engineering can have a great impact on future applications of SPIONs. Whereas positively charged PVA-NH$_2$-coated SPIONs can deliver cargos to the cell nucleus by lysosomal escape, negatively charged PVA-COOH-coated SPIONs show efficacy in attaching themselves to the cell membrane and can be used for targeting the disorders of cell membranes. The discovery of SPION traces in mitochondria created hopes for future applications of SPION-based DDSs to treat mitochondrial disorders and cardiac dysfunctions and even to halt the aging process. Further, as previously shown with other DDSs, SPIONs may be engineered with specific polymers to enhance the potential for crossing the BBB.

Novel SPION-based drug delivery and imaging systems are being developed and transformed rapidly. Li et al. [123] fabricated β-cyclodextrin conjugated SPIONs that bind to cholesterol crystals in a selective manner, creating hope for MRI detection of cholesterol crystal-related diseases such as atherosclerosis. In a recent novel work [124], a clinical MRI SPION formulation was used for ex vivo photoacoustic nodal staging of melanoma metastases in lymph nodes. In a very recent study [125], pH-responsive SPION micelles were incorporated with β-lapachone which generates ROS stress in cancer cells. The iron ions produced by SPIONs increased the ROS stress generated by β-lapachone by 10-fold and resulted in significantly increased cell death. Another possibility is using drug-free SPIONs for modifying disease; for example, SPIONs have been shown to alter the expression of obesity and type 2 diabetes-associated risk genes in human adipocytes [126]. These examples demonstrate that the applications of SPIONs in molecular therapy are limited only by the imagination and creativity of researchers.

Declaration of interest

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending or royalties.
Bibliography

31. Wang Y, Teng X, Wang JS, Yang H. Solvent-free atom transfer radical polymerization in the synthesis of
Fe$_2$O$_3$ polystyrene core-shell nanoparticles. Nano Lett 2003;3(6):789-93

SPIONs for delivery of therapeutic agents

158. Jiang W, Xie H, Ghooarah D, et al. Conjugation of functionalized SPIONs...
with transferrin for targeting and imaging brain glial tumors in rat model.

Affiliation
Sophie Laurent†, Amir Ata Saei2,3, Shahed Behzadi4, Arash Panahifar5 & Morteza Mahmoudi*3,6
†,*Authors for correspondence
1University of Mons, Avenue Maistriaux, NMR and Molecular Imaging Laboratory, Department of General, Organic, and Biomedical Chemistry, 19, B-7000 Mons, Belgium E-mail: sophie.laurent@umons.ac.be
2Tabriz University of Medical Sciences, School of Pharmacy, Research Center for Pharmaceutical Nanotechnology, Tabriz, Iran
3Tehran University of Medical Sciences, Nanotechnology Research Center, Department of Nanotechnology, Faculty of Pharmacy, Tehran, Iran E-mail: Mahmoudi@stanford.edu
4Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
5University of Alberta, Faculty of Pharmacy and Pharmaceutical Sciences, Edmonton, Alberta, Canada
6Stanford University, School of Medicine, Division of Cardiology, Department of Pediatrics, Stanford, CA, USA