Games Where You Can Play Optimally with Arena-Independent Finite Memory

Patricia Bouyer1 Stéphane Le Roux1 Youssouf Oualhadj2
Mickael Randour3 Pierre Vandenhove1,3

1LSV – CNRS & ENS Paris-Saclay, Université Paris-Saclay, France
2LACL – Université Paris-Est Créteil, France
3F.R.S.-FNRS & UMONS – Université de Mons, Belgium

September 2, 2020 – CONCUR 2020
Outline

Strategy synthesis for two-player turn-based games

Design optimal controllers for systems interacting with an antagonistic environment.

“Optimal” w.r.t. an objective or a specification.

Goal: interest in “simple” controllers

Finite-memory determinacy: when do finite-memory controllers suffice?

Inspiration

Results by Gimbert and Zielonka¹ about memoryless determinacy.

1 Memoryless determinacy

2 The need for memory

3 Arena-independent finite memory
1 Memoryless determinacy

2 The need for memory

3 Arena-independent finite memory
Two-player turn-based zero-sum games on graphs

- Finite two-player arenas: S_1 (circles, for P_1) and S_2 (squares, for P_2), edges E.
- Set C of colors. Edges are colored.
- “Objectives” given by preference relations $\sqsubseteq \in C^\omega \times C^\omega$ (total preorder). Zero-sum, \sqsubseteq^{-1}.
- A strategy for P_i is a (partial) function $\sigma : E^* \to E$.

$C = \{\top, \bot\}$

$C = \{\top, \bot\}$
Question

Given a preference relation, do “simple” strategies suffice to play optimally in all arenas?

A strategy σ of \mathcal{P}_i is \textit{memoryless} if it is a function $\exists^* \mathcal{S}_i \rightarrow E$.

E.g., for reachability, \textit{memoryless} strategies suffice. Also suffice for safety, Büchi, co-Büchi, parity, mean-payoff, energy, average-energy...
Memoryless determinacy

Good understanding of memoryless determinacy:

• **sufficient** conditions to guarantee memoryless optimal strategies for both players.\(^2\),\(^3\)

• **sufficient** conditions to guarantee memoryless optimal strategies for one player.\(^4\),\(^5\),\(^6\)

• **characterization** of the preference relations admitting optimal memoryless strategies for both players.\(^7\)

Gimbert and Zielonka’s characterization8

Let \sqsubseteq be a preference relation. Two results:

1. Characterization of memoryless determinacy w.r.t. properties of \sqsubseteq.
2. Corollary:

One-to-two-player memoryless lifting

If

- in all one-player arenas of \mathcal{P}_1, \mathcal{P}_1 has an optimal memoryless strategy,
- in all one-player arenas of \mathcal{P}_2, \mathcal{P}_2 has an optimal memoryless strategy,

then both players have an optimal memoryless strategy in all two-player arenas.

Extremely useful in practice. Very easy to recover memoryless determinacy of, e.g., mean-payoff and parity games.

8Gimbert and Zielonka, “Games Where You Can Play Optimally Without Any Memory”, 2005.
1 Memoryless determinacy

2 The need for memory

3 Arena-independent finite memory
The need for memory

Memoryless strategies do not always suffice.

\[(1, -1) \rightarrow (s_1, -1,-1) \rightarrow (s_2, -1,1) \rightarrow (B, -1,1) \]

- Büchi(A) \land Büchi(B): requires finite memory.

\[(1, -1) \rightarrow (m_1, -1,-1) \rightarrow (m_2, -1,1) \rightarrow (B, -1,1) \]

- Mean payoff \(\geq 0 \) in both dimensions: requires infinite memory.\(^9\)

\[\Rightarrow \text{Combinations of objectives usually require memory.} \]

An attempt at lifting [GZ05] to FM determinacy

- Lack of a good understanding of finite-memory determinacy.

- **Related work**: sufficient properties to preserve FM determinacy in Boolean combinations of objectives.

- Our approach:

 Hope: extend Gimbert and Zielonka’s results

 One-to-two-player lifting for memoryless finite-memory determinacy?

Counterexample

Let \(C \subseteq \mathbb{Z} \). \(P_1 \) wants to achieve a play \(\pi = c_1 c_2 \ldots \in C^\omega \) s.t.

\[
\lim \sup_n \sum_{i=0}^n c_i = +\infty \quad \text{or} \quad \exists \infty n, \sum_{i=0}^n c_i = 0.
\]

Optimal FM strategies in one-player arenas... ... but not in two-player arenas: \(P_1 \) wins but needs infinite memory.

Intuition:
In one-player arenas, \(P_1 \) can bound the memory he needs in advance.
In two-player arenas, \(P_2 \) can generate arbitrarily long sequences.
1 Memoryless determinacy

2 The need for memory

3 Arena-independent finite memory
Arena-independent memory

- For Büchi(A) \land Büchi(B), this structure suffices to play optimally on all arenas for P_1.

![Diagram](image)

- The counterexample fails because in one-player arenas, the size of the memory is dependent on the size of the arena.
- Observation: for many objectives, one fixed memory structure suffices for all arenas.

"For all A, does there exist M...?"

\rightarrow "Does there exist M, for all A...?"

Method: reproducing the approach of Gimbert and Zielonka given a memory structure M.
Characterization of arena-independent determinacy

Let \sqsubseteq be preference relation, \mathcal{M} be a memory structure.

1. Characterization of “playing with \mathcal{M} is sufficient” in terms of properties of \sqsubseteq.

2. Corollary:

One-to-two-player lifting

If
- in all one-player arenas of \mathcal{P}_1, \mathcal{P}_1 has an optimal strategy with memory \mathcal{M}_1,
- in all one-player arenas of \mathcal{P}_2, \mathcal{P}_2 has an optimal strategy with memory \mathcal{M}_2,

then both players have an optimal strategy in all two-player arenas with memory $\mathcal{M}_1 \otimes \mathcal{M}_2$.

In short: the study of one-player arenas is sufficient to determine whether playing with arena-independent finite memory suffices.
Applicability and limits

- **Applies to** objectives with optimal *arena-independent* strategies:
 - generalized reachability,\(^{11}\)
 - generalized parity,\(^{12}\)
 - window parity,\(^{13}\)
 - lower- and upper-bounded (multi-dimensional) energy games.\(^{14,15}\)

- **Does not apply to**, e.g., multi-dimension lower-bounded energy objectives:\(^{16}\) the size of the finite memory depends on the arena.

\(^{11}\) Fijalkow and Horn, “The surprizing complexity of reachability games”, 2010.

Conclusion

Key observation: for many objectives, arena-independent memory suffices.

Contributions

- Characterization of arena-independent finite-memory determinacy.
- One-to-two-player lifting.
- Generalization of Gimbert and Zielonka’s work.

Future work

Understand (arena-dependent) finite-memory determinacy through the study of one-player arenas.

Thanks!